最佳双层网格设计在分析阶段对几何缺陷和几何非线性条件的敏感性

IF 2.9 3区 工程技术 Q2 ENGINEERING, CIVIL
Amirali Rezaeizadeh, Mahsa Zandi, Majid Ilchi Ghazaan
{"title":"最佳双层网格设计在分析阶段对几何缺陷和几何非线性条件的敏感性","authors":"Amirali Rezaeizadeh, Mahsa Zandi, Majid Ilchi Ghazaan","doi":"10.1007/s11709-024-1062-6","DOIUrl":null,"url":null,"abstract":"<p>This study focuses on exploring the effects of geometrical imperfections and different analysis methods on the optimum design of Double-Layer Grids (DLGs), as used in the construction industry. A total of 12 notable metaheuristics are assessed and contrasted, and as a result, the Slime Mold Algorithm is identified as the most effective approach for size optimization of DLGs. To evaluate the influence of geometric imperfections and nonlinearity on the optimal design of real-size DLGs, the optimization process is carried out by considering and disregarding geometric nonlinearity while incorporating three distinct forms of geometrical imperfections, namely local imperfections, global imperfections, and combinations of both. In light of the uncertain nature of geometrical imperfections, probabilistic distributions are used to define these imperfections randomly in direction and magnitude. The results demonstrate that it is necessary to account for these imperfections to obtain an optimal solution. It’s worth noting that structural imperfections can increase the maximum stress ratio by up to 70%. The analysis also reveals that the initial curvature of members has a more significant impact on the optimal design of structures than the nodal installation error, indicating the need for greater attention to local imperfection issues in space structure construction.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"64 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity of optimal double-layer grid designs to geometrical imperfections and geometric nonlinearity conditions in the analysis phase\",\"authors\":\"Amirali Rezaeizadeh, Mahsa Zandi, Majid Ilchi Ghazaan\",\"doi\":\"10.1007/s11709-024-1062-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study focuses on exploring the effects of geometrical imperfections and different analysis methods on the optimum design of Double-Layer Grids (DLGs), as used in the construction industry. A total of 12 notable metaheuristics are assessed and contrasted, and as a result, the Slime Mold Algorithm is identified as the most effective approach for size optimization of DLGs. To evaluate the influence of geometric imperfections and nonlinearity on the optimal design of real-size DLGs, the optimization process is carried out by considering and disregarding geometric nonlinearity while incorporating three distinct forms of geometrical imperfections, namely local imperfections, global imperfections, and combinations of both. In light of the uncertain nature of geometrical imperfections, probabilistic distributions are used to define these imperfections randomly in direction and magnitude. The results demonstrate that it is necessary to account for these imperfections to obtain an optimal solution. It’s worth noting that structural imperfections can increase the maximum stress ratio by up to 70%. The analysis also reveals that the initial curvature of members has a more significant impact on the optimal design of structures than the nodal installation error, indicating the need for greater attention to local imperfection issues in space structure construction.</p>\",\"PeriodicalId\":12476,\"journal\":{\"name\":\"Frontiers of Structural and Civil Engineering\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Structural and Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11709-024-1062-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-1062-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是探索几何缺陷和不同分析方法对建筑行业使用的双层网格(DLGs)优化设计的影响。共对 12 种著名的元启发式算法进行了评估和对比,结果发现 Slime Mold 算法是最有效的双层格栅尺寸优化方法。为了评估几何缺陷和非线性对实际尺寸 DLG 优化设计的影响,在优化过程中考虑和忽略了几何非线性,同时纳入了三种不同形式的几何缺陷,即局部缺陷、全局缺陷和两者的组合。鉴于几何缺陷的不确定性,采用概率分布随机定义这些缺陷的方向和大小。结果表明,要获得最优解,必须考虑这些缺陷。值得注意的是,结构缺陷可使最大应力比增加 70%。分析还显示,与节点安装误差相比,构件的初始曲率对结构优化设计的影响更为显著,这表明在空间结构建造中需要更加关注局部缺陷问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitivity of optimal double-layer grid designs to geometrical imperfections and geometric nonlinearity conditions in the analysis phase

This study focuses on exploring the effects of geometrical imperfections and different analysis methods on the optimum design of Double-Layer Grids (DLGs), as used in the construction industry. A total of 12 notable metaheuristics are assessed and contrasted, and as a result, the Slime Mold Algorithm is identified as the most effective approach for size optimization of DLGs. To evaluate the influence of geometric imperfections and nonlinearity on the optimal design of real-size DLGs, the optimization process is carried out by considering and disregarding geometric nonlinearity while incorporating three distinct forms of geometrical imperfections, namely local imperfections, global imperfections, and combinations of both. In light of the uncertain nature of geometrical imperfections, probabilistic distributions are used to define these imperfections randomly in direction and magnitude. The results demonstrate that it is necessary to account for these imperfections to obtain an optimal solution. It’s worth noting that structural imperfections can increase the maximum stress ratio by up to 70%. The analysis also reveals that the initial curvature of members has a more significant impact on the optimal design of structures than the nodal installation error, indicating the need for greater attention to local imperfection issues in space structure construction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
3.30%
发文量
734
期刊介绍: Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信