2-Segal空间的一个$infty$类别

Jonte Gödicke
{"title":"2-Segal空间的一个$infty$类别","authors":"Jonte Gödicke","doi":"arxiv-2407.13357","DOIUrl":null,"url":null,"abstract":"Algebra objects in $\\infty$-categories of spans admit a description in terms\nof $2$-Segal objects. We introduce a notion of span between $2$-Segal objects\nand extend this correspondence to an equivalence of $\\infty$-categories.\nAdditionally, for every $\\infty$-category with finite limits $\\mathcal{C}$, we\nintroduce a notion of a birelative $2$-Segal object in $\\mathcal{C}$ and\nestablish a similar equivalence with the $\\infty$-category of bimodule objects\nin spans. Examples of these concepts arise from algebraic and hermitian\nK-theory through the corresponding Waldhausen $S_{\\bullet}$-construction. Apart\nfrom their categorical relevance, these concepts can be used to construct\nhomotopy coherent representations of Hall algebras.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An $\\\\infty$-Category of 2-Segal Spaces\",\"authors\":\"Jonte Gödicke\",\"doi\":\"arxiv-2407.13357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algebra objects in $\\\\infty$-categories of spans admit a description in terms\\nof $2$-Segal objects. We introduce a notion of span between $2$-Segal objects\\nand extend this correspondence to an equivalence of $\\\\infty$-categories.\\nAdditionally, for every $\\\\infty$-category with finite limits $\\\\mathcal{C}$, we\\nintroduce a notion of a birelative $2$-Segal object in $\\\\mathcal{C}$ and\\nestablish a similar equivalence with the $\\\\infty$-category of bimodule objects\\nin spans. Examples of these concepts arise from algebraic and hermitian\\nK-theory through the corresponding Waldhausen $S_{\\\\bullet}$-construction. Apart\\nfrom their categorical relevance, these concepts can be used to construct\\nhomotopy coherent representations of Hall algebras.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.13357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

跨度的$\infty$类中的代数对象可以用$2$-Segal对象来描述。此外,对于每一个具有有限极限$\mathcal{C}$的$\infty$类,我们引入了$\mathcal{C}$中的2$Segal对象的双向概念,并建立了与$\infty$类中的双模对象的类似等价关系。通过相应的瓦尔德豪森$S_{\bullet}$构造,这些概念的例子出现在代数理论和赫米特K理论中。除了它们的分类相关性之外,这些概念还可以用来构造霍尔代数的同调相干表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An $\infty$-Category of 2-Segal Spaces
Algebra objects in $\infty$-categories of spans admit a description in terms of $2$-Segal objects. We introduce a notion of span between $2$-Segal objects and extend this correspondence to an equivalence of $\infty$-categories. Additionally, for every $\infty$-category with finite limits $\mathcal{C}$, we introduce a notion of a birelative $2$-Segal object in $\mathcal{C}$ and establish a similar equivalence with the $\infty$-category of bimodule objects in spans. Examples of these concepts arise from algebraic and hermitian K-theory through the corresponding Waldhausen $S_{\bullet}$-construction. Apart from their categorical relevance, these concepts can be used to construct homotopy coherent representations of Hall algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信