关于布森斯克方程的非局部问题

IF 0.8 Q2 MATHEMATICS
Kh. T. Dekhkonov, Yu. E. Fayziev, R. R. Ashurov
{"title":"关于布森斯克方程的非局部问题","authors":"Kh. T. Dekhkonov, Yu. E. Fayziev, R. R. Ashurov","doi":"10.1134/s1995080224600808","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The problem of finding a solution, satisfying the non-local condition <span>\\(u(\\xi_{0})=\\alpha u(+0)+\\varphi\\)</span> in time for the Boussinesq type equation of the form <span>\\(u_{tt}+Au_{tt}+Au=f\\)</span> is studied in the article. Here <span>\\(\\alpha\\)</span> and <span>\\(\\xi_{0}\\)</span>, <span>\\(\\xi_{0}\\in(0,T],\\)</span> are the given numbers, <span>\\(A:H\\rightarrow H\\)</span> is the self-adjoint, unbounded, positive operator defined in the Hilbert separable space <span>\\(H\\)</span>. By using the Fourier method, it was shown that the solution to the problem exists and is unique. The effect of parameter <span>\\(\\alpha\\)</span> on the existence and uniqueness of the solution is studied in the article. The inverse problem of determining the right-hand side of the equation is also considered.</p>","PeriodicalId":46135,"journal":{"name":"Lobachevskii Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Non-local Problem for a Boussinesq Type Equations\",\"authors\":\"Kh. T. Dekhkonov, Yu. E. Fayziev, R. R. Ashurov\",\"doi\":\"10.1134/s1995080224600808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The problem of finding a solution, satisfying the non-local condition <span>\\\\(u(\\\\xi_{0})=\\\\alpha u(+0)+\\\\varphi\\\\)</span> in time for the Boussinesq type equation of the form <span>\\\\(u_{tt}+Au_{tt}+Au=f\\\\)</span> is studied in the article. Here <span>\\\\(\\\\alpha\\\\)</span> and <span>\\\\(\\\\xi_{0}\\\\)</span>, <span>\\\\(\\\\xi_{0}\\\\in(0,T],\\\\)</span> are the given numbers, <span>\\\\(A:H\\\\rightarrow H\\\\)</span> is the self-adjoint, unbounded, positive operator defined in the Hilbert separable space <span>\\\\(H\\\\)</span>. By using the Fourier method, it was shown that the solution to the problem exists and is unique. The effect of parameter <span>\\\\(\\\\alpha\\\\)</span> on the existence and uniqueness of the solution is studied in the article. The inverse problem of determining the right-hand side of the equation is also considered.</p>\",\"PeriodicalId\":46135,\"journal\":{\"name\":\"Lobachevskii Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lobachevskii Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1995080224600808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lobachevskii Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1995080224600808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Abstract The problem of finding a solution, satisfying the non-local condition \(u(\xi_{0})=\alpha u(+0)+\varphi\) in time for the Boussinesq type equation of the form \(u_{tt}+Au_{tt}+Au=f\) is studied in the article.这里\(\alpha\)和\(\xi_{0}\), \(\xi_{0}\in(0,T],\)是给定的数,\(A:H\rightarrow H\) 是定义在希尔伯特可分离空间 \(H\)中的自交、无界、正算子。通过使用傅立叶方法,证明了问题的解是存在的,并且是唯一的。文章研究了参数 \(α)对解的存在性和唯一性的影响。还考虑了确定方程右边的逆问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Non-local Problem for a Boussinesq Type Equations

Abstract

The problem of finding a solution, satisfying the non-local condition \(u(\xi_{0})=\alpha u(+0)+\varphi\) in time for the Boussinesq type equation of the form \(u_{tt}+Au_{tt}+Au=f\) is studied in the article. Here \(\alpha\) and \(\xi_{0}\), \(\xi_{0}\in(0,T],\) are the given numbers, \(A:H\rightarrow H\) is the self-adjoint, unbounded, positive operator defined in the Hilbert separable space \(H\). By using the Fourier method, it was shown that the solution to the problem exists and is unique. The effect of parameter \(\alpha\) on the existence and uniqueness of the solution is studied in the article. The inverse problem of determining the right-hand side of the equation is also considered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
42.90%
发文量
127
期刊介绍: Lobachevskii Journal of Mathematics is an international peer reviewed journal published in collaboration with the Russian Academy of Sciences and Kazan Federal University. The journal covers mathematical topics associated with the name of famous Russian mathematician Nikolai Lobachevsky (Lobachevskii). The journal publishes research articles on geometry and topology, algebra, complex analysis, functional analysis, differential equations and mathematical physics, probability theory and stochastic processes, computational mathematics, mathematical modeling, numerical methods and program complexes, computer science, optimal control, and theory of algorithms as well as applied mathematics. The journal welcomes manuscripts from all countries in the English language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信