论完整理论的吸收式可定义半群

IF 0.4 4区 数学 Q4 LOGIC
Mahsut Bekenov, Aida Kassatova, Anvar Nurakunov
{"title":"论完整理论的吸收式可定义半群","authors":"Mahsut Bekenov, Aida Kassatova, Anvar Nurakunov","doi":"10.1007/s00153-024-00937-2","DOIUrl":null,"url":null,"abstract":"<p>On the set of all first-order complete theories <span>\\(T(\\sigma )\\)</span> of a language <span>\\(\\sigma \\)</span> we define a binary operation <span>\\(\\{\\cdot \\}\\)</span> by the rule: <span>\\(T\\cdot S= {{\\,\\textrm{Th}\\,}}(\\{A\\times B\\mid A\\models T \\,\\,\\text {and}\\,\\, B\\models S\\})\\)</span> for any complete theories <span>\\(T, S\\in T(\\sigma )\\)</span>. The structure <span>\\(\\langle T(\\sigma );\\cdot \\rangle \\)</span> forms a commutative semigroup. A subsemigroup <i>S</i> of <span>\\(\\langle T(\\sigma );\\cdot \\rangle \\)</span> is called an <i>absorption’s formula definable semigroup</i> if there is a complete theory <span>\\(T\\in T(\\sigma )\\)</span> such that <span>\\(S=\\langle \\{X\\in T(\\sigma )\\mid X\\cdot T=T\\};\\cdot \\rangle \\)</span>. In this event we say that a theory <i>T</i> <i>absorbs</i> <i>S</i>. In the article we show that for any absorption’s formula definable semigroup <i>S</i> the class <span>\\({{\\,\\textrm{Mod}\\,}}(S)=\\{A\\in {{\\,\\textrm{Mod}\\,}}(\\sigma )\\mid A\\models T_0\\,\\,\\text {for some}\\,\\, T_0\\in S\\}\\)</span> is axiomatizable, and there is an idempotent element <span>\\(T\\in S\\)</span> that absorbs <i>S</i>. Moreover, <span>\\({{\\,\\textrm{Mod}\\,}}(S)\\)</span> is finitely axiomatizable provided <i>T</i> is finitely axiomatizable. We also prove that <span>\\({{\\,\\textrm{Mod}\\,}}(S)\\)</span> is a quasivariety (variety) provided <i>T</i> is an universal (a positive universal) theory. Some examples are provided.</p>","PeriodicalId":8350,"journal":{"name":"Archive for Mathematical Logic","volume":"9 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On absorption’s formula definable semigroups of complete theories\",\"authors\":\"Mahsut Bekenov, Aida Kassatova, Anvar Nurakunov\",\"doi\":\"10.1007/s00153-024-00937-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>On the set of all first-order complete theories <span>\\\\(T(\\\\sigma )\\\\)</span> of a language <span>\\\\(\\\\sigma \\\\)</span> we define a binary operation <span>\\\\(\\\\{\\\\cdot \\\\}\\\\)</span> by the rule: <span>\\\\(T\\\\cdot S= {{\\\\,\\\\textrm{Th}\\\\,}}(\\\\{A\\\\times B\\\\mid A\\\\models T \\\\,\\\\,\\\\text {and}\\\\,\\\\, B\\\\models S\\\\})\\\\)</span> for any complete theories <span>\\\\(T, S\\\\in T(\\\\sigma )\\\\)</span>. The structure <span>\\\\(\\\\langle T(\\\\sigma );\\\\cdot \\\\rangle \\\\)</span> forms a commutative semigroup. A subsemigroup <i>S</i> of <span>\\\\(\\\\langle T(\\\\sigma );\\\\cdot \\\\rangle \\\\)</span> is called an <i>absorption’s formula definable semigroup</i> if there is a complete theory <span>\\\\(T\\\\in T(\\\\sigma )\\\\)</span> such that <span>\\\\(S=\\\\langle \\\\{X\\\\in T(\\\\sigma )\\\\mid X\\\\cdot T=T\\\\};\\\\cdot \\\\rangle \\\\)</span>. In this event we say that a theory <i>T</i> <i>absorbs</i> <i>S</i>. In the article we show that for any absorption’s formula definable semigroup <i>S</i> the class <span>\\\\({{\\\\,\\\\textrm{Mod}\\\\,}}(S)=\\\\{A\\\\in {{\\\\,\\\\textrm{Mod}\\\\,}}(\\\\sigma )\\\\mid A\\\\models T_0\\\\,\\\\,\\\\text {for some}\\\\,\\\\, T_0\\\\in S\\\\}\\\\)</span> is axiomatizable, and there is an idempotent element <span>\\\\(T\\\\in S\\\\)</span> that absorbs <i>S</i>. Moreover, <span>\\\\({{\\\\,\\\\textrm{Mod}\\\\,}}(S)\\\\)</span> is finitely axiomatizable provided <i>T</i> is finitely axiomatizable. We also prove that <span>\\\\({{\\\\,\\\\textrm{Mod}\\\\,}}(S)\\\\)</span> is a quasivariety (variety) provided <i>T</i> is an universal (a positive universal) theory. Some examples are provided.</p>\",\"PeriodicalId\":8350,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00153-024-00937-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00153-024-00937-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

在一门语言的所有一阶完整理论的集合上 我们通过规则定义了二元运算\对于任何完整的理论(T, S\in T((西格玛))来说,Tcdot S= {{\textrm{Th}\,}}(\{Atimes B\mid A\models T\,\text {and}\, B\models S\})\).结构(\langle T(\sigma );\cdot \rangle \)形成了一个交换半群。如果存在一个完整的理论 \(T\in T(\sigma )\) ,使得 \(S=\langle \{X\in T(\sigma )\mid X\cdot T=T\};\cdot\rangle \),那么这个理论的子半群 S 就叫做吸收式可定义半群。在这种情况下,我们说理论T吸收了S。在文章中,我们证明了对于任何吸收公式可定义的半群S,类\({{\,\textrm{Mod}\,}}(S)={A\in {{\,\textrm{Mod}\、text{for some}\,T_0\in S}\) 是可以公理化的,并且有一个吸收S的幂等元素(T/in S)。此外,只要 T 是有限公理化的,那么 \({{\,textrm{Mod}\,}}(S)\) 就是有限公理化的。我们还证明,只要 T 是一个普遍(正普遍)理论,\({{\,textrm{Mod}\,}}(S)\) 就是一个准变量(variety)。我们提供了一些例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On absorption’s formula definable semigroups of complete theories

On the set of all first-order complete theories \(T(\sigma )\) of a language \(\sigma \) we define a binary operation \(\{\cdot \}\) by the rule: \(T\cdot S= {{\,\textrm{Th}\,}}(\{A\times B\mid A\models T \,\,\text {and}\,\, B\models S\})\) for any complete theories \(T, S\in T(\sigma )\). The structure \(\langle T(\sigma );\cdot \rangle \) forms a commutative semigroup. A subsemigroup S of \(\langle T(\sigma );\cdot \rangle \) is called an absorption’s formula definable semigroup if there is a complete theory \(T\in T(\sigma )\) such that \(S=\langle \{X\in T(\sigma )\mid X\cdot T=T\};\cdot \rangle \). In this event we say that a theory T absorbs S. In the article we show that for any absorption’s formula definable semigroup S the class \({{\,\textrm{Mod}\,}}(S)=\{A\in {{\,\textrm{Mod}\,}}(\sigma )\mid A\models T_0\,\,\text {for some}\,\, T_0\in S\}\) is axiomatizable, and there is an idempotent element \(T\in S\) that absorbs S. Moreover, \({{\,\textrm{Mod}\,}}(S)\) is finitely axiomatizable provided T is finitely axiomatizable. We also prove that \({{\,\textrm{Mod}\,}}(S)\) is a quasivariety (variety) provided T is an universal (a positive universal) theory. Some examples are provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
45
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信