焊接参数对 CMT 焊接 TC4 钛合金接头表面成形和显微组织的影响

IF 0.9 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiaoyan Gu, Siyu Hu, Rui Zhang, Weihan Wang, Xiaopeng Gu
{"title":"焊接参数对 CMT 焊接 TC4 钛合金接头表面成形和显微组织的影响","authors":"Xiaoyan Gu, Siyu Hu, Rui Zhang, Weihan Wang, Xiaopeng Gu","doi":"10.2140/jomms.2024.19.615","DOIUrl":null,"url":null,"abstract":"<p>Low heat input, less spatter and low deformation after welding are some of the advantages of joining titanium alloys using CMT welding. However, few systematic studies about the effects of welding parameters on joint formation and microstructure characteristics have been conducted. In this paper, a numerical model for CMT based on time interval loading and double ellipsoid volume heat flow distribution is established by using APDL language in ANSYS software. The effects of wire feed speed and welding speed on the temperature field, stress field and deformation cloud distribution characteristics of CMT welding for TC4 titanium alloy are studied. The numerical simulation results in a high degree of coincidence with the experimental weld, with an average error of no more than 7%. At the same time, the influence of wire feed speed and welding speed on the surface formation and microstructure of the weld is experimentally studied in this paper. The results of numerical simulation show that with the increase of wire feed speed, the area of high temperature zone of the joint enlarges. The peak temperature at the arc closing position changes from 2858 <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math>C to 4182 <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math>C. As the welding speed increases, the area of high temperature zone of the joint shrinks. The peak temperature at the arc closing position decreases from 4722 <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math>C to 2133 <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math>C. When the wire feed speed is 5.5 m/min and the welding speed is 0.45 m/min, the maximum von Mises residual stress on the upper surface is relatively small, 730 MPa, and the maximum deformation is relatively small, 0.869 mm. The experiment results show that with the increase of the wire feed speed, the melt width on the front side gradually increases and the formation of the back side gradually changes from discontinuous to continuous and uniform. The average grain size in the weld increases from 10.0 <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi></math>m to 16.7 <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi></math>m. With the increase of welding speed, the melt width on the front side gradually decreases and the formation of the back side gradually changes from continuous and uniform to discontinuous. The average grain size in the weld decreases from 14.3 <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi></math>m to 9.1 <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>μ</mi></math>m. </p>","PeriodicalId":50134,"journal":{"name":"Journal of Mechanics of Materials and Structures","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of welding parameters on surface formation and microstructure for TC4 titanium alloy joint welded by CMT\",\"authors\":\"Xiaoyan Gu, Siyu Hu, Rui Zhang, Weihan Wang, Xiaopeng Gu\",\"doi\":\"10.2140/jomms.2024.19.615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Low heat input, less spatter and low deformation after welding are some of the advantages of joining titanium alloys using CMT welding. However, few systematic studies about the effects of welding parameters on joint formation and microstructure characteristics have been conducted. In this paper, a numerical model for CMT based on time interval loading and double ellipsoid volume heat flow distribution is established by using APDL language in ANSYS software. The effects of wire feed speed and welding speed on the temperature field, stress field and deformation cloud distribution characteristics of CMT welding for TC4 titanium alloy are studied. The numerical simulation results in a high degree of coincidence with the experimental weld, with an average error of no more than 7%. At the same time, the influence of wire feed speed and welding speed on the surface formation and microstructure of the weld is experimentally studied in this paper. The results of numerical simulation show that with the increase of wire feed speed, the area of high temperature zone of the joint enlarges. The peak temperature at the arc closing position changes from 2858 <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math>C to 4182 <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math>C. As the welding speed increases, the area of high temperature zone of the joint shrinks. The peak temperature at the arc closing position decreases from 4722 <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math>C to 2133 <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math>C. When the wire feed speed is 5.5 m/min and the welding speed is 0.45 m/min, the maximum von Mises residual stress on the upper surface is relatively small, 730 MPa, and the maximum deformation is relatively small, 0.869 mm. The experiment results show that with the increase of the wire feed speed, the melt width on the front side gradually increases and the formation of the back side gradually changes from discontinuous to continuous and uniform. The average grain size in the weld increases from 10.0 <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>μ</mi></math>m to 16.7 <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>μ</mi></math>m. With the increase of welding speed, the melt width on the front side gradually decreases and the formation of the back side gradually changes from continuous and uniform to discontinuous. The average grain size in the weld decreases from 14.3 <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>μ</mi></math>m to 9.1 <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>μ</mi></math>m. </p>\",\"PeriodicalId\":50134,\"journal\":{\"name\":\"Journal of Mechanics of Materials and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics of Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2140/jomms.2024.19.615\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics of Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2140/jomms.2024.19.615","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

使用 CMT 焊接连接钛合金具有输入热量低、飞溅少和焊接后变形小等优点。然而,有关焊接参数对接头形成和微观结构特征影响的系统研究却很少。本文使用 ANSYS 软件中的 APDL 语言建立了基于时间间隔加载和双椭圆体体积热流分布的 CMT 数值模型。研究了送丝速度和焊接速度对 TC4 钛合金 CMT 焊接温度场、应力场和变形云分布特征的影响。数值模拟结果与实验焊缝高度吻合,平均误差不超过 7%。同时,本文还通过实验研究了送丝速度和焊接速度对焊缝表面成形和显微组织的影响。数值模拟结果表明,随着送丝速度的增加,焊点高温区的面积增大。收弧位置的峰值温度从 2858 ∘C 变为 4182 ∘C。随着焊接速度的增加,接头高温区的面积缩小。收弧位置的峰值温度从 4722 ∘C 降至 2133 ∘C。当送丝速度为 5.5 m/min 和焊接速度为 0.45 m/min 时,上表面的最大 von Mises 残余应力相对较小,为 730 MPa,最大变形相对较小,为 0.869 mm。实验结果表明,随着送丝速度的增加,正面的熔体宽度逐渐增大,背面的熔体形成由不连续逐渐变为连续均匀。焊缝中的平均晶粒大小从 10.0 μm 增加到 16.7 μm。随着焊接速度的增加,正面的熔体宽度逐渐减小,背面的形成从连续均匀逐渐变为不连续。焊缝中的平均晶粒大小从 14.3 μm 减小到 9.1 μm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of welding parameters on surface formation and microstructure for TC4 titanium alloy joint welded by CMT

Low heat input, less spatter and low deformation after welding are some of the advantages of joining titanium alloys using CMT welding. However, few systematic studies about the effects of welding parameters on joint formation and microstructure characteristics have been conducted. In this paper, a numerical model for CMT based on time interval loading and double ellipsoid volume heat flow distribution is established by using APDL language in ANSYS software. The effects of wire feed speed and welding speed on the temperature field, stress field and deformation cloud distribution characteristics of CMT welding for TC4 titanium alloy are studied. The numerical simulation results in a high degree of coincidence with the experimental weld, with an average error of no more than 7%. At the same time, the influence of wire feed speed and welding speed on the surface formation and microstructure of the weld is experimentally studied in this paper. The results of numerical simulation show that with the increase of wire feed speed, the area of high temperature zone of the joint enlarges. The peak temperature at the arc closing position changes from 2858 C to 4182 C. As the welding speed increases, the area of high temperature zone of the joint shrinks. The peak temperature at the arc closing position decreases from 4722 C to 2133 C. When the wire feed speed is 5.5 m/min and the welding speed is 0.45 m/min, the maximum von Mises residual stress on the upper surface is relatively small, 730 MPa, and the maximum deformation is relatively small, 0.869 mm. The experiment results show that with the increase of the wire feed speed, the melt width on the front side gradually increases and the formation of the back side gradually changes from discontinuous to continuous and uniform. The average grain size in the weld increases from 10.0 μm to 16.7 μm. With the increase of welding speed, the melt width on the front side gradually decreases and the formation of the back side gradually changes from continuous and uniform to discontinuous. The average grain size in the weld decreases from 14.3 μm to 9.1 μm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mechanics of Materials and Structures
Journal of Mechanics of Materials and Structures 工程技术-材料科学:综合
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
3.5 months
期刊介绍: Drawing from all areas of engineering, materials, and biology, the mechanics of solids, materials, and structures is experiencing considerable growth in directions not anticipated a few years ago, which involve the development of new technology requiring multidisciplinary simulation. The journal stimulates this growth by emphasizing fundamental advances that are relevant in dealing with problems of all length scales. Of growing interest are the multiscale problems with an interaction between small and large scale phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信