{"title":"二维静态 Q 值映射的内部正则性","authors":"Jonas Hirsch, Luca Spolaor","doi":"10.1007/s00205-024-02011-w","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that 2-dimensional <i>Q</i>-valued maps that are stationary with respect to outer and inner variations of the Dirichlet energy are Hölder continuous and that the dimension of their singular set is at most one. In the course of the proof we establish a strong concentration-compactness theorem for equicontinuous maps that are stationary with respect to outer variations only, and which holds in every dimensions.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-02011-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Interior Regularity for Two-Dimensional Stationary Q-Valued Maps\",\"authors\":\"Jonas Hirsch, Luca Spolaor\",\"doi\":\"10.1007/s00205-024-02011-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that 2-dimensional <i>Q</i>-valued maps that are stationary with respect to outer and inner variations of the Dirichlet energy are Hölder continuous and that the dimension of their singular set is at most one. In the course of the proof we establish a strong concentration-compactness theorem for equicontinuous maps that are stationary with respect to outer variations only, and which holds in every dimensions.</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00205-024-02011-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-024-02011-w\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02011-w","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Interior Regularity for Two-Dimensional Stationary Q-Valued Maps
We prove that 2-dimensional Q-valued maps that are stationary with respect to outer and inner variations of the Dirichlet energy are Hölder continuous and that the dimension of their singular set is at most one. In the course of the proof we establish a strong concentration-compactness theorem for equicontinuous maps that are stationary with respect to outer variations only, and which holds in every dimensions.
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.