{"title":"ElasticBatch:用于 MIG 批量推理的学习增强型弹性调度系统","authors":"Jiaxing Qi;Wencong Xiao;Mingzhen Li;Chaojie Yang;Yong Li;Wei Lin;Hailong Yang;Zhongzhi Luan;Depei Qian","doi":"10.1109/TPDS.2024.3431189","DOIUrl":null,"url":null,"abstract":"As deep learning (DL) technologies become ubiquitous, GPU clusters are deployed for inference tasks with consistent service level objectives (SLOs). Efficiently utilizing multiple GPUs is crucial for throughput and cost-effectiveness. This article addresses the challenges posed by dynamic input and NVIDIA MIG in scheduling DL workloads. We present ElasticBatch, a scheduling system that simplifies configuration through bucketization and employs a machine learning-based pipeline to optimize settings. Our experiments demonstrate that ElasticBatch achieves a 50% reduction in GPU instances compared to MIG disablement, increases GPU utilization by 1.4% to 6.5% over an ideal scheduler and significantly reduces profiling time. This research contributes to the discourse on efficient utilization of GPU clusters. ElasticBatch's effectiveness in mitigating challenges posed by dynamic inputs and NVIDIA MIG underscores its potential to optimize GPU cluster performance, providing tangible benefits in terms of reduced instances, increased utilization, and significant time savings in real-world deployment scenarios.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"35 10","pages":"1708-1720"},"PeriodicalIF":5.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ElasticBatch: A Learning-Augmented Elastic Scheduling System for Batch Inference on MIG\",\"authors\":\"Jiaxing Qi;Wencong Xiao;Mingzhen Li;Chaojie Yang;Yong Li;Wei Lin;Hailong Yang;Zhongzhi Luan;Depei Qian\",\"doi\":\"10.1109/TPDS.2024.3431189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As deep learning (DL) technologies become ubiquitous, GPU clusters are deployed for inference tasks with consistent service level objectives (SLOs). Efficiently utilizing multiple GPUs is crucial for throughput and cost-effectiveness. This article addresses the challenges posed by dynamic input and NVIDIA MIG in scheduling DL workloads. We present ElasticBatch, a scheduling system that simplifies configuration through bucketization and employs a machine learning-based pipeline to optimize settings. Our experiments demonstrate that ElasticBatch achieves a 50% reduction in GPU instances compared to MIG disablement, increases GPU utilization by 1.4% to 6.5% over an ideal scheduler and significantly reduces profiling time. This research contributes to the discourse on efficient utilization of GPU clusters. ElasticBatch's effectiveness in mitigating challenges posed by dynamic inputs and NVIDIA MIG underscores its potential to optimize GPU cluster performance, providing tangible benefits in terms of reduced instances, increased utilization, and significant time savings in real-world deployment scenarios.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":\"35 10\",\"pages\":\"1708-1720\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10605084/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10605084/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
ElasticBatch: A Learning-Augmented Elastic Scheduling System for Batch Inference on MIG
As deep learning (DL) technologies become ubiquitous, GPU clusters are deployed for inference tasks with consistent service level objectives (SLOs). Efficiently utilizing multiple GPUs is crucial for throughput and cost-effectiveness. This article addresses the challenges posed by dynamic input and NVIDIA MIG in scheduling DL workloads. We present ElasticBatch, a scheduling system that simplifies configuration through bucketization and employs a machine learning-based pipeline to optimize settings. Our experiments demonstrate that ElasticBatch achieves a 50% reduction in GPU instances compared to MIG disablement, increases GPU utilization by 1.4% to 6.5% over an ideal scheduler and significantly reduces profiling time. This research contributes to the discourse on efficient utilization of GPU clusters. ElasticBatch's effectiveness in mitigating challenges posed by dynamic inputs and NVIDIA MIG underscores its potential to optimize GPU cluster performance, providing tangible benefits in terms of reduced instances, increased utilization, and significant time savings in real-world deployment scenarios.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.