Vincent Guigues, Anton J. Kleywegt, Giovanni Amorim, Andre Krauss, Victor Hugo Nascimento
{"title":"LASPATED:时空离散数据分析库(用户手册)","authors":"Vincent Guigues, Anton J. Kleywegt, Giovanni Amorim, Andre Krauss, Victor Hugo Nascimento","doi":"arxiv-2407.13889","DOIUrl":null,"url":null,"abstract":"This is the User Manual of LASPATED library. This library is available on\nGitHub (at https://github.com/vguigues/LASPATED)) and provides a set of tools\nto analyze spatiotemporal data. A video tutorial for this library is available\non Youtube. It is made of a Python package for time and space discretizations\nand of two packages (one in Matlab and one in C++) implementing the calibration\nof the probabilistic models for stochastic spatio-temporal data proposed in the\ncompanion paper arXiv:2203.16371v2.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LASPATED: A Library for the Analysis of Spatio-Temporal Discrete Data (User Manual)\",\"authors\":\"Vincent Guigues, Anton J. Kleywegt, Giovanni Amorim, Andre Krauss, Victor Hugo Nascimento\",\"doi\":\"arxiv-2407.13889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is the User Manual of LASPATED library. This library is available on\\nGitHub (at https://github.com/vguigues/LASPATED)) and provides a set of tools\\nto analyze spatiotemporal data. A video tutorial for this library is available\\non Youtube. It is made of a Python package for time and space discretizations\\nand of two packages (one in Matlab and one in C++) implementing the calibration\\nof the probabilistic models for stochastic spatio-temporal data proposed in the\\ncompanion paper arXiv:2203.16371v2.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.13889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LASPATED: A Library for the Analysis of Spatio-Temporal Discrete Data (User Manual)
This is the User Manual of LASPATED library. This library is available on
GitHub (at https://github.com/vguigues/LASPATED)) and provides a set of tools
to analyze spatiotemporal data. A video tutorial for this library is available
on Youtube. It is made of a Python package for time and space discretizations
and of two packages (one in Matlab and one in C++) implementing the calibration
of the probabilistic models for stochastic spatio-temporal data proposed in the
companion paper arXiv:2203.16371v2.