Mahdi Tabatabaei Malazi, Faraz Afshari, Kenan Kaya
{"title":"建筑和汽车应用中的相变材料 (PCMS):回顾研究","authors":"Mahdi Tabatabaei Malazi, Faraz Afshari, Kenan Kaya","doi":"10.1615/heattransres.2024053911","DOIUrl":null,"url":null,"abstract":"Phase Change Materials (PCMs) play a pivotal role in various sectors, particularly in automotive engineering, electric vehicles (EVs), and building construction. In the automotive sector, PCMs are crucial for thermal management systems, aiding in temperature regulation of components such as batteries and engines. In EVs, PCMs are instrumental in enhancing battery performance and lifespan by effectively managing thermal loads during charging and discharging cycles, thus ensuring optimal operating conditions. Moreover, in buildings, PCMs contribute significantly to energy efficiency by storing and releasing heat as required, reducing reliance on conventional heating and cooling systems. Their ability to store and release large amounts of energy at specific temperatures makes PCMs indispensable for sustainable solutions in automotive and building applications, contributing to improved performance, efficiency, and environmental sustainability.","PeriodicalId":50408,"journal":{"name":"Heat Transfer Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PHASE CHANGE MATERIALS (PCMS) FOR BUILDINGS AND AUTOMOTIVE APPLICATIONS: A REVIEW STUDY\",\"authors\":\"Mahdi Tabatabaei Malazi, Faraz Afshari, Kenan Kaya\",\"doi\":\"10.1615/heattransres.2024053911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase Change Materials (PCMs) play a pivotal role in various sectors, particularly in automotive engineering, electric vehicles (EVs), and building construction. In the automotive sector, PCMs are crucial for thermal management systems, aiding in temperature regulation of components such as batteries and engines. In EVs, PCMs are instrumental in enhancing battery performance and lifespan by effectively managing thermal loads during charging and discharging cycles, thus ensuring optimal operating conditions. Moreover, in buildings, PCMs contribute significantly to energy efficiency by storing and releasing heat as required, reducing reliance on conventional heating and cooling systems. Their ability to store and release large amounts of energy at specific temperatures makes PCMs indispensable for sustainable solutions in automotive and building applications, contributing to improved performance, efficiency, and environmental sustainability.\",\"PeriodicalId\":50408,\"journal\":{\"name\":\"Heat Transfer Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/heattransres.2024053911\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/heattransres.2024053911","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
PHASE CHANGE MATERIALS (PCMS) FOR BUILDINGS AND AUTOMOTIVE APPLICATIONS: A REVIEW STUDY
Phase Change Materials (PCMs) play a pivotal role in various sectors, particularly in automotive engineering, electric vehicles (EVs), and building construction. In the automotive sector, PCMs are crucial for thermal management systems, aiding in temperature regulation of components such as batteries and engines. In EVs, PCMs are instrumental in enhancing battery performance and lifespan by effectively managing thermal loads during charging and discharging cycles, thus ensuring optimal operating conditions. Moreover, in buildings, PCMs contribute significantly to energy efficiency by storing and releasing heat as required, reducing reliance on conventional heating and cooling systems. Their ability to store and release large amounts of energy at specific temperatures makes PCMs indispensable for sustainable solutions in automotive and building applications, contributing to improved performance, efficiency, and environmental sustainability.
期刊介绍:
Heat Transfer Research (ISSN1064-2285) presents archived theoretical, applied, and experimental papers selected globally. Selected papers from technical conference proceedings and academic laboratory reports are also published. Papers are selected and reviewed by a group of expert associate editors, guided by a distinguished advisory board, and represent the best of current work in the field. Heat Transfer Research is published under an exclusive license to Begell House, Inc., in full compliance with the International Copyright Convention. Subjects covered in Heat Transfer Research encompass the entire field of heat transfer and relevant areas of fluid dynamics, including conduction, convection and radiation, phase change phenomena including boiling and solidification, heat exchanger design and testing, heat transfer in nuclear reactors, mass transfer, geothermal heat recovery, multi-scale heat transfer, heat and mass transfer in alternative energy systems, and thermophysical properties of materials.