{"title":"在结果缺失的随机临床试验中,基于经验似然法对平均治疗效果进行加权估计","authors":"Yuanyao Tan, Xialing Wen, Wei Liang, Ying Yan","doi":"10.4310/sii.2024.v17.n4.a7","DOIUrl":null,"url":null,"abstract":"There has been growing attention on covariate adjustment for treatment effect estimation in an objective and efficient manner in randomized clinical trials. In this paper, we propose a weighting approach to extract covariate information based on the empirical likelihood method for the randomized clinical trials with possible missingness in the outcomes. Multiple regression models are imposed to delineate the missing data mechanism and the covariate-outcome relationship, respectively. We demonstrate that the proposed estimator is suitable for objective inference of treatment effects. Theoretically, we prove that the proposed approach is multiply robust and semiparametrically efficient. We conduct simulations and a real data study to make comparisons with other existing methods.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"40 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirical likelihood-based weighted estimation of average treatment effects in randomized clinical trials with missing outcomes\",\"authors\":\"Yuanyao Tan, Xialing Wen, Wei Liang, Ying Yan\",\"doi\":\"10.4310/sii.2024.v17.n4.a7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been growing attention on covariate adjustment for treatment effect estimation in an objective and efficient manner in randomized clinical trials. In this paper, we propose a weighting approach to extract covariate information based on the empirical likelihood method for the randomized clinical trials with possible missingness in the outcomes. Multiple regression models are imposed to delineate the missing data mechanism and the covariate-outcome relationship, respectively. We demonstrate that the proposed estimator is suitable for objective inference of treatment effects. Theoretically, we prove that the proposed approach is multiply robust and semiparametrically efficient. We conduct simulations and a real data study to make comparisons with other existing methods.\",\"PeriodicalId\":51230,\"journal\":{\"name\":\"Statistics and Its Interface\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Its Interface\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/sii.2024.v17.n4.a7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Its Interface","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/sii.2024.v17.n4.a7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Empirical likelihood-based weighted estimation of average treatment effects in randomized clinical trials with missing outcomes
There has been growing attention on covariate adjustment for treatment effect estimation in an objective and efficient manner in randomized clinical trials. In this paper, we propose a weighting approach to extract covariate information based on the empirical likelihood method for the randomized clinical trials with possible missingness in the outcomes. Multiple regression models are imposed to delineate the missing data mechanism and the covariate-outcome relationship, respectively. We demonstrate that the proposed estimator is suitable for objective inference of treatment effects. Theoretically, we prove that the proposed approach is multiply robust and semiparametrically efficient. We conduct simulations and a real data study to make comparisons with other existing methods.
期刊介绍:
Exploring the interface between the field of statistics and other disciplines, including but not limited to: biomedical sciences, geosciences, computer sciences, engineering, and social and behavioral sciences. Publishes high-quality articles in broad areas of statistical science, emphasizing substantive problems, sound statistical models and methods, clear and efficient computational algorithms, and insightful discussions of the motivating problems.