具有非明显缺失数据的分类响应变量的潜类选择模型

Pub Date : 2024-07-19 DOI:10.4310/22-sii753
Jung Wun Lee, Ofer Harel
{"title":"具有非明显缺失数据的分类响应变量的潜类选择模型","authors":"Jung Wun Lee, Ofer Harel","doi":"10.4310/22-sii753","DOIUrl":null,"url":null,"abstract":"We develop a new selection model for nonignorable missing values in multivariate categorical response variables by assuming that the response variables and their missingness can be summarized into categorical latent variables. Our proposed model contains two categorical latent variables. One latent variable summarizes the response patterns while the other describes the response variables’ missingness. Our selection model is an alternative method to other incomplete data methods when the incomplete data mechanism is nonignorable. We implement simulation studies to evaluate the performance of the proposed method and analyze the General Social Survey 2018 data to demonstrate its performance.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A latent class selection model for categorical response variables with nonignorably missing data\",\"authors\":\"Jung Wun Lee, Ofer Harel\",\"doi\":\"10.4310/22-sii753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a new selection model for nonignorable missing values in multivariate categorical response variables by assuming that the response variables and their missingness can be summarized into categorical latent variables. Our proposed model contains two categorical latent variables. One latent variable summarizes the response patterns while the other describes the response variables’ missingness. Our selection model is an alternative method to other incomplete data methods when the incomplete data mechanism is nonignorable. We implement simulation studies to evaluate the performance of the proposed method and analyze the General Social Survey 2018 data to demonstrate its performance.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/22-sii753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/22-sii753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们假定响应变量及其缺失性可以归纳为分类潜变量,从而为多元分类响应变量中的不可忽略缺失值建立了一个新的选择模型。我们提出的模型包含两个分类潜变量。一个潜变量概括了响应模式,另一个则描述了响应变量的缺失情况。当不完全数据机制不可忽略时,我们的选择模型是其他不完全数据方法的替代方法。我们实施了模拟研究来评估所提出方法的性能,并分析了 2018 年一般社会调查数据来证明其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A latent class selection model for categorical response variables with nonignorably missing data
We develop a new selection model for nonignorable missing values in multivariate categorical response variables by assuming that the response variables and their missingness can be summarized into categorical latent variables. Our proposed model contains two categorical latent variables. One latent variable summarizes the response patterns while the other describes the response variables’ missingness. Our selection model is an alternative method to other incomplete data methods when the incomplete data mechanism is nonignorable. We implement simulation studies to evaluate the performance of the proposed method and analyze the General Social Survey 2018 data to demonstrate its performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信