{"title":"通过子采样估计重尾分布海量数据集的极值指数","authors":"Yongxin Li, Liujun Chen, Deyuan Li, Hansheng Wang","doi":"10.4310/22-sii749","DOIUrl":null,"url":null,"abstract":"Modern statistical analyses often encounter datasets with massive sizes and heavy-tailed distributions. For datasets with massive sizes, traditional estimation methods can hardly be used to estimate the extreme value index directly. To address the issue, we propose here a subsampling-based method. Specifically, multiple subsamples are drawn from the whole dataset by using the technique of simple random subsampling with replacement. Based on each subsample, an approximate maximum likelihood estimator can be computed. The resulting estimators are then averaged to form a more accurate one. Under appropriate regularity conditions, we show theoretically that the proposed estimator is consistent and asymptotically normal. With the help of the estimated extreme value index, we can estimate high-level quantiles and tail probabilities of a heavy-tailed random variable consistently. Extensive simulation experiments are provided to demonstrate the promising performance of our method. A real data analysis is also presented for illustration purpose.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"27 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating extreme value index by subsampling for massive datasets with heavy-tailed distributions\",\"authors\":\"Yongxin Li, Liujun Chen, Deyuan Li, Hansheng Wang\",\"doi\":\"10.4310/22-sii749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern statistical analyses often encounter datasets with massive sizes and heavy-tailed distributions. For datasets with massive sizes, traditional estimation methods can hardly be used to estimate the extreme value index directly. To address the issue, we propose here a subsampling-based method. Specifically, multiple subsamples are drawn from the whole dataset by using the technique of simple random subsampling with replacement. Based on each subsample, an approximate maximum likelihood estimator can be computed. The resulting estimators are then averaged to form a more accurate one. Under appropriate regularity conditions, we show theoretically that the proposed estimator is consistent and asymptotically normal. With the help of the estimated extreme value index, we can estimate high-level quantiles and tail probabilities of a heavy-tailed random variable consistently. Extensive simulation experiments are provided to demonstrate the promising performance of our method. A real data analysis is also presented for illustration purpose.\",\"PeriodicalId\":51230,\"journal\":{\"name\":\"Statistics and Its Interface\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Its Interface\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/22-sii749\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Its Interface","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/22-sii749","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Estimating extreme value index by subsampling for massive datasets with heavy-tailed distributions
Modern statistical analyses often encounter datasets with massive sizes and heavy-tailed distributions. For datasets with massive sizes, traditional estimation methods can hardly be used to estimate the extreme value index directly. To address the issue, we propose here a subsampling-based method. Specifically, multiple subsamples are drawn from the whole dataset by using the technique of simple random subsampling with replacement. Based on each subsample, an approximate maximum likelihood estimator can be computed. The resulting estimators are then averaged to form a more accurate one. Under appropriate regularity conditions, we show theoretically that the proposed estimator is consistent and asymptotically normal. With the help of the estimated extreme value index, we can estimate high-level quantiles and tail probabilities of a heavy-tailed random variable consistently. Extensive simulation experiments are provided to demonstrate the promising performance of our method. A real data analysis is also presented for illustration purpose.
期刊介绍:
Exploring the interface between the field of statistics and other disciplines, including but not limited to: biomedical sciences, geosciences, computer sciences, engineering, and social and behavioral sciences. Publishes high-quality articles in broad areas of statistical science, emphasizing substantive problems, sound statistical models and methods, clear and efficient computational algorithms, and insightful discussions of the motivating problems.