$H^{\frac{11}{4}}(\mathbb{R}^2)$二维弹性波系统的假定性

IF 0.5 4区 数学 Q3 MATHEMATICS
Xinliang An, Haoyang Chen, Silu Yin
{"title":"$H^{\\frac{11}{4}}(\\mathbb{R}^2)$二维弹性波系统的假定性","authors":"Xinliang An, Haoyang Chen, Silu Yin","doi":"10.4310/pamq.2024.v20.n4.a11","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that for the 2D elastic wave equations, a physical system with multiple wave-speeds, its Cauchy problem fails to be locally well-posed in $H \\frac{11}{4} (\\mathbb R^2)$. The ill-posedness here is driven by instantaneous shock formation. In 2D Smith-Tataru showed that the Cauchy problem for a single quasilinear wave equation is locally well-posed in $H^s$ with $s \\gt \\frac{11}{4}$. Hence our $H ^\\frac{11}{4}$ ill-posedness obtained here is a desired result. Our proof relies on combining a geometric method and an algebraic wave-decomposition approach, together with detailed analysis of the corresponding hyperbolic system.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"36 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$H^{\\\\frac{11}{4}}(\\\\mathbb{R}^2)$ Ill-Posedness for 2D Elastic Wave System\",\"authors\":\"Xinliang An, Haoyang Chen, Silu Yin\",\"doi\":\"10.4310/pamq.2024.v20.n4.a11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove that for the 2D elastic wave equations, a physical system with multiple wave-speeds, its Cauchy problem fails to be locally well-posed in $H \\\\frac{11}{4} (\\\\mathbb R^2)$. The ill-posedness here is driven by instantaneous shock formation. In 2D Smith-Tataru showed that the Cauchy problem for a single quasilinear wave equation is locally well-posed in $H^s$ with $s \\\\gt \\\\frac{11}{4}$. Hence our $H ^\\\\frac{11}{4}$ ill-posedness obtained here is a desired result. Our proof relies on combining a geometric method and an algebraic wave-decomposition approach, together with detailed analysis of the corresponding hyperbolic system.\",\"PeriodicalId\":54526,\"journal\":{\"name\":\"Pure and Applied Mathematics Quarterly\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Mathematics Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2024.v20.n4.a11\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n4.a11","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了对于二维弹性波方程这一具有多重波速的物理系统,其考奇问题无法在 $H \frac{11}{4} 中局部良好求解。(\mathbb R^2)$.这里的拟合不良是由瞬时冲击形成驱动的。史密斯-塔图鲁(Smith-Tataru)在二维研究中发现,单个准线性波方程的考奇问题在 $H ^s$ 中局部良好求和,$s \gt \frac{11}{4}$。因此,我们在此得到的 $H ^\frac{11}{4}$ 不合常理是一个理想的结果。我们的证明依赖于几何方法和代数波分解方法的结合,以及对相应双曲系统的详细分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$H^{\frac{11}{4}}(\mathbb{R}^2)$ Ill-Posedness for 2D Elastic Wave System
In this paper, we prove that for the 2D elastic wave equations, a physical system with multiple wave-speeds, its Cauchy problem fails to be locally well-posed in $H \frac{11}{4} (\mathbb R^2)$. The ill-posedness here is driven by instantaneous shock formation. In 2D Smith-Tataru showed that the Cauchy problem for a single quasilinear wave equation is locally well-posed in $H^s$ with $s \gt \frac{11}{4}$. Hence our $H ^\frac{11}{4}$ ill-posedness obtained here is a desired result. Our proof relies on combining a geometric method and an algebraic wave-decomposition approach, together with detailed analysis of the corresponding hyperbolic system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
30
审稿时长
>12 weeks
期刊介绍: Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信