从卡洛吉罗-莫泽自旋系统推导半波图方程

IF 0.5 4区 数学 Q3 MATHEMATICS
Enno Lenzmann, Jérémy Sok
{"title":"从卡洛吉罗-莫泽自旋系统推导半波图方程","authors":"Enno Lenzmann, Jérémy Sok","doi":"10.4310/pamq.2024.v20.n4.a10","DOIUrl":null,"url":null,"abstract":"We prove that the energy-critical half-wave maps equation\\[$\\partial_t \\mathbf {S} = \\mathbf {S} \\times |\\nabla |\\mathbf {S}, \\quad (\\mathit{t}, \\mathit{x}) \\in \\mathbb R \\times \\mathbb T$\\]arises as an effective equation in the continuum limit of completely integrable Calogero–Moser classical spin systems with inverse square $1/r^2$ interactions on the circle. We study both the convergence to global-in-time weak solutions in the energy class as well as short-time strong solutions of higher regularity. The proofs are based on Fourier methods and suitable discrete analogues of fractional Leibniz rules and Kato–Ponce–Vega commutator estimates.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"48 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derivation of the half-wave maps equation from Calogero–Moser spin systems\",\"authors\":\"Enno Lenzmann, Jérémy Sok\",\"doi\":\"10.4310/pamq.2024.v20.n4.a10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the energy-critical half-wave maps equation\\\\[$\\\\partial_t \\\\mathbf {S} = \\\\mathbf {S} \\\\times |\\\\nabla |\\\\mathbf {S}, \\\\quad (\\\\mathit{t}, \\\\mathit{x}) \\\\in \\\\mathbb R \\\\times \\\\mathbb T$\\\\]arises as an effective equation in the continuum limit of completely integrable Calogero–Moser classical spin systems with inverse square $1/r^2$ interactions on the circle. We study both the convergence to global-in-time weak solutions in the energy class as well as short-time strong solutions of higher regularity. The proofs are based on Fourier methods and suitable discrete analogues of fractional Leibniz rules and Kato–Ponce–Vega commutator estimates.\",\"PeriodicalId\":54526,\"journal\":{\"name\":\"Pure and Applied Mathematics Quarterly\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Mathematics Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2024.v20.n4.a10\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n4.a10","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了能量临界半波映射方程([$\partial_t \mathbf {S} = \mathbf {S} \times |\nabla |\mathbf {S}, \quad (\mathit{t}、\in \mathbb R \times \mathbb T$\]作为完全可积分的卡洛吉罗-莫泽经典自旋系统连续极限中的有效方程出现,该系统在圆上具有反平方 1/r^2$ 的相互作用。我们既研究了能量类中全局时间弱解的收敛性,也研究了更高正则性的短时间强解。证明基于傅里叶方法和分数莱布尼兹规则的合适离散类似物以及 Kato-Ponce-Vega 换向器估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derivation of the half-wave maps equation from Calogero–Moser spin systems
We prove that the energy-critical half-wave maps equation\[$\partial_t \mathbf {S} = \mathbf {S} \times |\nabla |\mathbf {S}, \quad (\mathit{t}, \mathit{x}) \in \mathbb R \times \mathbb T$\]arises as an effective equation in the continuum limit of completely integrable Calogero–Moser classical spin systems with inverse square $1/r^2$ interactions on the circle. We study both the convergence to global-in-time weak solutions in the energy class as well as short-time strong solutions of higher regularity. The proofs are based on Fourier methods and suitable discrete analogues of fractional Leibniz rules and Kato–Ponce–Vega commutator estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
30
审稿时长
>12 weeks
期刊介绍: Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信