谐波坐标下爱因斯坦方程空无穷远处的质量

IF 0.5 4区 数学 Q3 MATHEMATICS
Lili He, Hans Lindblad
{"title":"谐波坐标下爱因斯坦方程空无穷远处的质量","authors":"Lili He, Hans Lindblad","doi":"10.4310/pamq.2024.v20.n4.a3","DOIUrl":null,"url":null,"abstract":"In this work, we give a complete picture of how to, in a direct simple way, define the mass at null infinity in harmonic coordinates in three different ways that we show satisfy the Bondi mass loss law. The first and second way involve only the limit of metric (Trautman mass) respectively the null second fundamental forms along asymptotically characteristic surfaces (asymptotic Hawking mass) that only depend on the ADM mass. The last involves construction of special characteristic coordinates at null infinity (Bondi mass). The results here rely on asymptotics of the metric derived in $\\href{https://doi.org/10.1007/s00220-017-2876-z}{[27]}$.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Masses at null infinity for Einstein's equations in harmonic coordinates\",\"authors\":\"Lili He, Hans Lindblad\",\"doi\":\"10.4310/pamq.2024.v20.n4.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we give a complete picture of how to, in a direct simple way, define the mass at null infinity in harmonic coordinates in three different ways that we show satisfy the Bondi mass loss law. The first and second way involve only the limit of metric (Trautman mass) respectively the null second fundamental forms along asymptotically characteristic surfaces (asymptotic Hawking mass) that only depend on the ADM mass. The last involves construction of special characteristic coordinates at null infinity (Bondi mass). The results here rely on asymptotics of the metric derived in $\\\\href{https://doi.org/10.1007/s00220-017-2876-z}{[27]}$.\",\"PeriodicalId\":54526,\"journal\":{\"name\":\"Pure and Applied Mathematics Quarterly\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Mathematics Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2024.v20.n4.a3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n4.a3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们完整地描述了如何以直接简单的方式在谐波坐标中定义空无穷大处的质量,并用三种不同的方法证明了这些方法满足邦迪质量损失定律。第一种和第二种方法只涉及度量的极限(特劳特曼质量),分别是沿着渐近特征曲面的空第二基本形式(渐近霍金质量),它们只取决于 ADM 质量。最后一种方法涉及在空无穷远处构建特殊的特征坐标(邦迪质量)。这里的结果依赖于$\href{https://doi.org/10.1007/s00220-017-2876-z}{[27]}$中导出的度量的渐近论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Masses at null infinity for Einstein's equations in harmonic coordinates
In this work, we give a complete picture of how to, in a direct simple way, define the mass at null infinity in harmonic coordinates in three different ways that we show satisfy the Bondi mass loss law. The first and second way involve only the limit of metric (Trautman mass) respectively the null second fundamental forms along asymptotically characteristic surfaces (asymptotic Hawking mass) that only depend on the ADM mass. The last involves construction of special characteristic coordinates at null infinity (Bondi mass). The results here rely on asymptotics of the metric derived in $\href{https://doi.org/10.1007/s00220-017-2876-z}{[27]}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
30
审稿时长
>12 weeks
期刊介绍: Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信