全局耦合地图中的横向 Lyapunov 指数和嵌合体

IF 1.7 4区 数学 Q2 MATHEMATICS, APPLIED
Théophile Caby, Pierre Guiraud
{"title":"全局耦合地图中的横向 Lyapunov 指数和嵌合体","authors":"Théophile Caby, Pierre Guiraud","doi":"10.1137/23m1603339","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 1946-1965, September 2024. <br/> Abstract.We study the stability properties and the long-term dynamics of chimeras in systems of globally coupled maps. In particular, we establish a formula for the transverse Lyapunov exponent of the states of the system containing synchronized units. We use this formula to present numerical evidence of attracting chimeras having chaotic dynamics as well as periodic behaviors. We also show that, at least for polynomial local maps, attracting periodic cycles tend to belong to cluster spaces, and, more generally, limit sets of chimera orbits have zero Lebesgue measure for strong coupling regimes.","PeriodicalId":49534,"journal":{"name":"SIAM Journal on Applied Dynamical Systems","volume":"25 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transverse Lyapunov Exponent and Chimeras in Globally Coupled Maps\",\"authors\":\"Théophile Caby, Pierre Guiraud\",\"doi\":\"10.1137/23m1603339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 1946-1965, September 2024. <br/> Abstract.We study the stability properties and the long-term dynamics of chimeras in systems of globally coupled maps. In particular, we establish a formula for the transverse Lyapunov exponent of the states of the system containing synchronized units. We use this formula to present numerical evidence of attracting chimeras having chaotic dynamics as well as periodic behaviors. We also show that, at least for polynomial local maps, attracting periodic cycles tend to belong to cluster spaces, and, more generally, limit sets of chimera orbits have zero Lebesgue measure for strong coupling regimes.\",\"PeriodicalId\":49534,\"journal\":{\"name\":\"SIAM Journal on Applied Dynamical Systems\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1603339\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1603339","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 应用动力系统期刊》,第 23 卷第 3 期,第 1946-1965 页,2024 年 9 月。 摘要:我们研究了全局耦合映射系统中嵌合体的稳定性和长期动力学。特别是,我们建立了包含同步单元的系统状态的横向 Lyapunov 指数公式。我们利用这个公式提出了具有混沌动力学和周期行为的吸引嵌合体的数值证据。我们还证明,至少对于多项式局部映射,吸引周期性循环倾向于属于簇空间,更一般地说,在强耦合状态下,嵌合体轨道的极限集的勒贝格度量为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transverse Lyapunov Exponent and Chimeras in Globally Coupled Maps
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 1946-1965, September 2024.
Abstract.We study the stability properties and the long-term dynamics of chimeras in systems of globally coupled maps. In particular, we establish a formula for the transverse Lyapunov exponent of the states of the system containing synchronized units. We use this formula to present numerical evidence of attracting chimeras having chaotic dynamics as well as periodic behaviors. We also show that, at least for polynomial local maps, attracting periodic cycles tend to belong to cluster spaces, and, more generally, limit sets of chimera orbits have zero Lebesgue measure for strong coupling regimes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Applied Dynamical Systems
SIAM Journal on Applied Dynamical Systems 物理-物理:数学物理
CiteScore
3.60
自引率
4.80%
发文量
74
审稿时长
6 months
期刊介绍: SIAM Journal on Applied Dynamical Systems (SIADS) publishes research articles on the mathematical analysis and modeling of dynamical systems and its application to the physical, engineering, life, and social sciences. SIADS is published in electronic format only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信