O. V. Pilipenko, G. P. Markov, N. V. Salnaya, P. A. Minaev, N. A. Aphinogenova
{"title":"烧制陶瓷的考古磁记录反映了什么?","authors":"O. V. Pilipenko, G. P. Markov, N. V. Salnaya, P. A. Minaev, N. A. Aphinogenova","doi":"10.1134/S1069351324700435","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—A complex of archaeomagnetic and rock magnetic studies is conducted to compare the archaeomagnetic intensity determined by the Thellier–Coe and Wilson methods with the known “true” value of the geomagnetic field during the firing of the ceramic samples manufactured on February 21, 2017 in the town of Myshkin (Yaroslavl oblast, Russia). The results obtained show two different values of archaeomagnetic intensity corresponding to two temperature intervals. The archaeomagnetic intensity estimated from the low-temperature interval (~150–350°C) are approximately 13 μT lower than the true value, while the values obtained in the interval of ~350–600°C are fairly close to the “true” ones. The cause of the phenomenon is likely due to the presence of small magnetic grains in the ceramic under study, which are close in size to superparamagnetic ones and can resume their growth upon heating and reaching a particle size in a single-domain state. The results of rock magnetic studies suggest that thermoremanent magnetization in the studied ceramics is carried by grains of oxidized magnetite, hematite, and possibly ε-Fe<sub>2</sub>O<sub>3.</sub></p>","PeriodicalId":602,"journal":{"name":"Izvestiya, Physics of the Solid Earth","volume":"60 3","pages":"424 - 440"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What Does the Archaeomagnetic Record of Fired Ceramics Reflect?\",\"authors\":\"O. V. Pilipenko, G. P. Markov, N. V. Salnaya, P. A. Minaev, N. A. Aphinogenova\",\"doi\":\"10.1134/S1069351324700435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Abstract</b>—A complex of archaeomagnetic and rock magnetic studies is conducted to compare the archaeomagnetic intensity determined by the Thellier–Coe and Wilson methods with the known “true” value of the geomagnetic field during the firing of the ceramic samples manufactured on February 21, 2017 in the town of Myshkin (Yaroslavl oblast, Russia). The results obtained show two different values of archaeomagnetic intensity corresponding to two temperature intervals. The archaeomagnetic intensity estimated from the low-temperature interval (~150–350°C) are approximately 13 μT lower than the true value, while the values obtained in the interval of ~350–600°C are fairly close to the “true” ones. The cause of the phenomenon is likely due to the presence of small magnetic grains in the ceramic under study, which are close in size to superparamagnetic ones and can resume their growth upon heating and reaching a particle size in a single-domain state. The results of rock magnetic studies suggest that thermoremanent magnetization in the studied ceramics is carried by grains of oxidized magnetite, hematite, and possibly ε-Fe<sub>2</sub>O<sub>3.</sub></p>\",\"PeriodicalId\":602,\"journal\":{\"name\":\"Izvestiya, Physics of the Solid Earth\",\"volume\":\"60 3\",\"pages\":\"424 - 440\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya, Physics of the Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1069351324700435\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya, Physics of the Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S1069351324700435","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
What Does the Archaeomagnetic Record of Fired Ceramics Reflect?
Abstract—A complex of archaeomagnetic and rock magnetic studies is conducted to compare the archaeomagnetic intensity determined by the Thellier–Coe and Wilson methods with the known “true” value of the geomagnetic field during the firing of the ceramic samples manufactured on February 21, 2017 in the town of Myshkin (Yaroslavl oblast, Russia). The results obtained show two different values of archaeomagnetic intensity corresponding to two temperature intervals. The archaeomagnetic intensity estimated from the low-temperature interval (~150–350°C) are approximately 13 μT lower than the true value, while the values obtained in the interval of ~350–600°C are fairly close to the “true” ones. The cause of the phenomenon is likely due to the presence of small magnetic grains in the ceramic under study, which are close in size to superparamagnetic ones and can resume their growth upon heating and reaching a particle size in a single-domain state. The results of rock magnetic studies suggest that thermoremanent magnetization in the studied ceramics is carried by grains of oxidized magnetite, hematite, and possibly ε-Fe2O3.
期刊介绍:
Izvestiya, Physics of the Solid Earth is an international peer reviewed journal that publishes results of original theoretical and experimental research in relevant areas of the physics of the Earth''s interior and applied geophysics. The journal welcomes manuscripts from all countries in the English or Russian language.