{"title":"具有反平方势的三次-五次非线性薛定谔方程","authors":"Alex H. Ardila, Jason Murphy","doi":"10.1007/s00030-024-00979-8","DOIUrl":null,"url":null,"abstract":"<p>We consider the nonlinear Schrödinger equation in three space dimensions with a focusing cubic nonlinearity and defocusing quintic nonlinearity and in the presence of an external inverse-square potential. We establish scattering in the region of the mass-energy plane where the virial functional is guaranteed to be positive. Our result parallels the scattering result of [11] in the setting of the standard cubic-quintic NLS.\n</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The cubic-quintic nonlinear Schrödinger equation with inverse-square potential\",\"authors\":\"Alex H. Ardila, Jason Murphy\",\"doi\":\"10.1007/s00030-024-00979-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the nonlinear Schrödinger equation in three space dimensions with a focusing cubic nonlinearity and defocusing quintic nonlinearity and in the presence of an external inverse-square potential. We establish scattering in the region of the mass-energy plane where the virial functional is guaranteed to be positive. Our result parallels the scattering result of [11] in the setting of the standard cubic-quintic NLS.\\n</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00979-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00979-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The cubic-quintic nonlinear Schrödinger equation with inverse-square potential
We consider the nonlinear Schrödinger equation in three space dimensions with a focusing cubic nonlinearity and defocusing quintic nonlinearity and in the presence of an external inverse-square potential. We establish scattering in the region of the mass-energy plane where the virial functional is guaranteed to be positive. Our result parallels the scattering result of [11] in the setting of the standard cubic-quintic NLS.