Yijian Zheng, Ying Yang, Ruixue Wang, Youxin Yang, Xuejia Gong, Jingjing E, Junguo Wang
{"title":"交叉应力对植物乳杆菌 LIP-1 冷冻干燥后存活的影响","authors":"Yijian Zheng, Ying Yang, Ruixue Wang, Youxin Yang, Xuejia Gong, Jingjing E, Junguo Wang","doi":"10.1007/s11947-024-03512-y","DOIUrl":null,"url":null,"abstract":"<p>Appropriate single-stress treatment can improve the resistance of lactic acid bacteria against freeze-drying. However, whether the combination of two stresses can further enhance their resistance warrants exploration. This study examined the effects of cross stress on the resistance of the <i>Lactiplantibacillus plantarum</i> LIP-1 strain against freeze-drying. Compared with oxygen or cold stress alone, cross stress increased the post-freeze-drying survival rate of <i>L. plantarum</i> LIP-1 to 84.98% (<i>P</i> < 0.05). After 8 weeks of room-temperature storage, the count of live bacteria could still be maintained at 6.27 × 10<sup>9</sup> CFU/g. Mechanistic analyses revealed that the strain treated with cross stress could synthesize more protective biofilms and surface proteins, which significantly reduced cell wall damage. Furthermore, owing to the combined effect of two single stresses, cross stress could enhance the strain’s antioxidant capacity, reduce the production of reactive oxygen species, inhibit the oxidation of fatty acids in the cell membrane, and maintain the integrity and fluidity of the cell membrane. In addition, cross stress treatment increased the intracellular pH, effectively reducing the degree of DNA damage. These factors significantly improved the survival rate of <i>L. plantarum</i> LIP-1 after freeze-drying.</p>","PeriodicalId":562,"journal":{"name":"Food and Bioprocess Technology","volume":"21 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Cross Stress on the Survival of Lactiplantibacillus plantarum LIP-1 After Freeze-Drying\",\"authors\":\"Yijian Zheng, Ying Yang, Ruixue Wang, Youxin Yang, Xuejia Gong, Jingjing E, Junguo Wang\",\"doi\":\"10.1007/s11947-024-03512-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Appropriate single-stress treatment can improve the resistance of lactic acid bacteria against freeze-drying. However, whether the combination of two stresses can further enhance their resistance warrants exploration. This study examined the effects of cross stress on the resistance of the <i>Lactiplantibacillus plantarum</i> LIP-1 strain against freeze-drying. Compared with oxygen or cold stress alone, cross stress increased the post-freeze-drying survival rate of <i>L. plantarum</i> LIP-1 to 84.98% (<i>P</i> < 0.05). After 8 weeks of room-temperature storage, the count of live bacteria could still be maintained at 6.27 × 10<sup>9</sup> CFU/g. Mechanistic analyses revealed that the strain treated with cross stress could synthesize more protective biofilms and surface proteins, which significantly reduced cell wall damage. Furthermore, owing to the combined effect of two single stresses, cross stress could enhance the strain’s antioxidant capacity, reduce the production of reactive oxygen species, inhibit the oxidation of fatty acids in the cell membrane, and maintain the integrity and fluidity of the cell membrane. In addition, cross stress treatment increased the intracellular pH, effectively reducing the degree of DNA damage. These factors significantly improved the survival rate of <i>L. plantarum</i> LIP-1 after freeze-drying.</p>\",\"PeriodicalId\":562,\"journal\":{\"name\":\"Food and Bioprocess Technology\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Bioprocess Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11947-024-03512-y\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Bioprocess Technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11947-024-03512-y","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Effects of Cross Stress on the Survival of Lactiplantibacillus plantarum LIP-1 After Freeze-Drying
Appropriate single-stress treatment can improve the resistance of lactic acid bacteria against freeze-drying. However, whether the combination of two stresses can further enhance their resistance warrants exploration. This study examined the effects of cross stress on the resistance of the Lactiplantibacillus plantarum LIP-1 strain against freeze-drying. Compared with oxygen or cold stress alone, cross stress increased the post-freeze-drying survival rate of L. plantarum LIP-1 to 84.98% (P < 0.05). After 8 weeks of room-temperature storage, the count of live bacteria could still be maintained at 6.27 × 109 CFU/g. Mechanistic analyses revealed that the strain treated with cross stress could synthesize more protective biofilms and surface proteins, which significantly reduced cell wall damage. Furthermore, owing to the combined effect of two single stresses, cross stress could enhance the strain’s antioxidant capacity, reduce the production of reactive oxygen species, inhibit the oxidation of fatty acids in the cell membrane, and maintain the integrity and fluidity of the cell membrane. In addition, cross stress treatment increased the intracellular pH, effectively reducing the degree of DNA damage. These factors significantly improved the survival rate of L. plantarum LIP-1 after freeze-drying.
期刊介绍:
Food and Bioprocess Technology provides an effective and timely platform for cutting-edge high quality original papers in the engineering and science of all types of food processing technologies, from the original food supply source to the consumer’s dinner table. It aims to be a leading international journal for the multidisciplinary agri-food research community.
The journal focuses especially on experimental or theoretical research findings that have the potential for helping the agri-food industry to improve process efficiency, enhance product quality and, extend shelf-life of fresh and processed agri-food products. The editors present critical reviews on new perspectives to established processes, innovative and emerging technologies, and trends and future research in food and bioproducts processing. The journal also publishes short communications for rapidly disseminating preliminary results, letters to the Editor on recent developments and controversy, and book reviews.