通过精确带宽预测增强低延迟自适应直播流

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Bo Wang;Muhan Su;Wufan Wang;Kefan Chen;Bingyang Liu;Fengyuan Ren;Mingwei Xu;Jiangchuan Liu;Jianping Wu
{"title":"通过精确带宽预测增强低延迟自适应直播流","authors":"Bo Wang;Muhan Su;Wufan Wang;Kefan Chen;Bingyang Liu;Fengyuan Ren;Mingwei Xu;Jiangchuan Liu;Jianping Wu","doi":"10.1109/TNET.2024.3426607","DOIUrl":null,"url":null,"abstract":"To ensure high performance for HTTP adaptive streaming (HAS), it is critical to provide accurate prediction of end-to-end network bandwidth. Low Latency Live Streaming (LLLS), which has been gaining popularity, faces even greater challenges in this regard. Unlike Video-on-Demand (VOD) streaming, which only needs long-term bandwidth prediction and can tolerate some prediction errors, LLLS demands precise short-term bandwidth predictions. These challenges are amplified by the fact that short-term bandwidth experiences both large abrupt changes and uncertain fluctuations. Furthermore, obtaining valid bandwidth measurement samples in LLLS poses difficulties due to the on-off traffic pattern. In this work, we present DeeProphet, a system designed to enhance the performance of LLLS by achieving accurate bandwidth prediction. DeeProphet collects valid bandwidth samples by identifying intervals of packet continuous sending leveraging TCP state information, estimates the segment-level bandwidth robustly by filtering out noisy samples, and predicts both significant changes and uncertain fluctuations in future bandwidth by combining both time series and learning-based models. Experimental results demonstrate that DeeProphet effectively enhances the overall Quality of Experience (QoE) by 39.5% to 464.6% compared to state-of-the-art LLLS Adaptive Bitrate (ABR) algorithms.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"4676-4691"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Low Latency Adaptive Live Streaming Through Precise Bandwidth Prediction\",\"authors\":\"Bo Wang;Muhan Su;Wufan Wang;Kefan Chen;Bingyang Liu;Fengyuan Ren;Mingwei Xu;Jiangchuan Liu;Jianping Wu\",\"doi\":\"10.1109/TNET.2024.3426607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To ensure high performance for HTTP adaptive streaming (HAS), it is critical to provide accurate prediction of end-to-end network bandwidth. Low Latency Live Streaming (LLLS), which has been gaining popularity, faces even greater challenges in this regard. Unlike Video-on-Demand (VOD) streaming, which only needs long-term bandwidth prediction and can tolerate some prediction errors, LLLS demands precise short-term bandwidth predictions. These challenges are amplified by the fact that short-term bandwidth experiences both large abrupt changes and uncertain fluctuations. Furthermore, obtaining valid bandwidth measurement samples in LLLS poses difficulties due to the on-off traffic pattern. In this work, we present DeeProphet, a system designed to enhance the performance of LLLS by achieving accurate bandwidth prediction. DeeProphet collects valid bandwidth samples by identifying intervals of packet continuous sending leveraging TCP state information, estimates the segment-level bandwidth robustly by filtering out noisy samples, and predicts both significant changes and uncertain fluctuations in future bandwidth by combining both time series and learning-based models. Experimental results demonstrate that DeeProphet effectively enhances the overall Quality of Experience (QoE) by 39.5% to 464.6% compared to state-of-the-art LLLS Adaptive Bitrate (ABR) algorithms.\",\"PeriodicalId\":13443,\"journal\":{\"name\":\"IEEE/ACM Transactions on Networking\",\"volume\":\"32 6\",\"pages\":\"4676-4691\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10600146/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10600146/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Low Latency Adaptive Live Streaming Through Precise Bandwidth Prediction
To ensure high performance for HTTP adaptive streaming (HAS), it is critical to provide accurate prediction of end-to-end network bandwidth. Low Latency Live Streaming (LLLS), which has been gaining popularity, faces even greater challenges in this regard. Unlike Video-on-Demand (VOD) streaming, which only needs long-term bandwidth prediction and can tolerate some prediction errors, LLLS demands precise short-term bandwidth predictions. These challenges are amplified by the fact that short-term bandwidth experiences both large abrupt changes and uncertain fluctuations. Furthermore, obtaining valid bandwidth measurement samples in LLLS poses difficulties due to the on-off traffic pattern. In this work, we present DeeProphet, a system designed to enhance the performance of LLLS by achieving accurate bandwidth prediction. DeeProphet collects valid bandwidth samples by identifying intervals of packet continuous sending leveraging TCP state information, estimates the segment-level bandwidth robustly by filtering out noisy samples, and predicts both significant changes and uncertain fluctuations in future bandwidth by combining both time series and learning-based models. Experimental results demonstrate that DeeProphet effectively enhances the overall Quality of Experience (QoE) by 39.5% to 464.6% compared to state-of-the-art LLLS Adaptive Bitrate (ABR) algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE/ACM Transactions on Networking
IEEE/ACM Transactions on Networking 工程技术-电信学
CiteScore
8.20
自引率
5.40%
发文量
246
审稿时长
4-8 weeks
期刊介绍: The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信