{"title":"迈斯纳多面体的密度","authors":"Ryan Hynd","doi":"10.1007/s10711-024-00933-z","DOIUrl":null,"url":null,"abstract":"<p>We consider Meissner polyhedra in <span>\\(\\mathbb {R}^3\\)</span>. These are constant width bodies whose boundaries consist of pieces of spheres and spindle tori. We define these shapes by taking appropriate intersections of congruent balls and show that they are dense within the space of constant width bodies in the Hausdorff topology. This density assertion was essentially established by Sallee. However, we offer a modern viewpoint taking into consideration the recent progress in understanding ball polyhedra and in constructing constant width bodies based on these shapes.\n</p>","PeriodicalId":55103,"journal":{"name":"Geometriae Dedicata","volume":"7 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The density of Meissner polyhedra\",\"authors\":\"Ryan Hynd\",\"doi\":\"10.1007/s10711-024-00933-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider Meissner polyhedra in <span>\\\\(\\\\mathbb {R}^3\\\\)</span>. These are constant width bodies whose boundaries consist of pieces of spheres and spindle tori. We define these shapes by taking appropriate intersections of congruent balls and show that they are dense within the space of constant width bodies in the Hausdorff topology. This density assertion was essentially established by Sallee. However, we offer a modern viewpoint taking into consideration the recent progress in understanding ball polyhedra and in constructing constant width bodies based on these shapes.\\n</p>\",\"PeriodicalId\":55103,\"journal\":{\"name\":\"Geometriae Dedicata\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometriae Dedicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00933-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometriae Dedicata","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00933-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We consider Meissner polyhedra in \(\mathbb {R}^3\). These are constant width bodies whose boundaries consist of pieces of spheres and spindle tori. We define these shapes by taking appropriate intersections of congruent balls and show that they are dense within the space of constant width bodies in the Hausdorff topology. This density assertion was essentially established by Sallee. However, we offer a modern viewpoint taking into consideration the recent progress in understanding ball polyhedra and in constructing constant width bodies based on these shapes.
期刊介绍:
Geometriae Dedicata concentrates on geometry and its relationship to topology, group theory and the theory of dynamical systems.
Geometriae Dedicata aims to be a vehicle for excellent publications in geometry and related areas. Features of the journal will include:
A fast turn-around time for articles.
Special issues centered on specific topics.
All submitted papers should include some explanation of the context of the main results.
Geometriae Dedicata was founded in 1972 on the initiative of Hans Freudenthal in Utrecht, the Netherlands, who viewed geometry as a method rather than as a field. The present Board of Editors tries to continue in this spirit. The steady growth of the journal since its foundation is witness to the validity of the founder''s vision and to the success of the Editors'' mission.