针对具体地点的氮推荐:快速、准确、可行的贝叶斯克里金法

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Davood Poursina, B. Wade Brorsen
{"title":"针对具体地点的氮推荐:快速、准确、可行的贝叶斯克里金法","authors":"Davood Poursina, B. Wade Brorsen","doi":"10.1007/s00180-024-01527-9","DOIUrl":null,"url":null,"abstract":"<p>Bayesian Kriging (BK) provides a way to estimate regression models where the parameters are smoothed across space. Such estimates could help guide site-specific fertilizer recommendations. One advantage of BK is that it can readily fill in the missing values that are common in yield monitor data. The problem is that previous methods are too computationally intensive to be commercially feasible when estimating a nonlinear production function. This paper sought to increase computational speed by imposing restrictions on the spatial covariance matrix. Previous research used an exponential function for the spatial covariance matrix. The two alternatives considered are the conditional autoregressive and simultaneous autoregressive models. In addition, a new analytical solution is provided for finding the optimal value of nitrogen with a stochastic linear plateau model. A comparison among models in the accuracy and computational burden shows that the restrictions significantly reduced the computational burden, although they did sacrifice some accuracy in the dataset considered.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"13 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Site-specific nitrogen recommendation: fast, accurate, and feasible Bayesian kriging\",\"authors\":\"Davood Poursina, B. Wade Brorsen\",\"doi\":\"10.1007/s00180-024-01527-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bayesian Kriging (BK) provides a way to estimate regression models where the parameters are smoothed across space. Such estimates could help guide site-specific fertilizer recommendations. One advantage of BK is that it can readily fill in the missing values that are common in yield monitor data. The problem is that previous methods are too computationally intensive to be commercially feasible when estimating a nonlinear production function. This paper sought to increase computational speed by imposing restrictions on the spatial covariance matrix. Previous research used an exponential function for the spatial covariance matrix. The two alternatives considered are the conditional autoregressive and simultaneous autoregressive models. In addition, a new analytical solution is provided for finding the optimal value of nitrogen with a stochastic linear plateau model. A comparison among models in the accuracy and computational burden shows that the restrictions significantly reduced the computational burden, although they did sacrifice some accuracy in the dataset considered.</p>\",\"PeriodicalId\":55223,\"journal\":{\"name\":\"Computational Statistics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01527-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01527-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

贝叶斯克里金法(BK)提供了一种估计回归模型的方法,其中的参数在空间上被平滑处理。这种估计有助于指导针对具体地点的施肥建议。贝叶斯克里金法的一个优点是,它可以随时填补产量监测数据中常见的缺失值。问题在于,以前的方法计算量过大,在估算非线性生产函数时不具有商业可行性。本文试图通过对空间协方差矩阵施加限制来提高计算速度。以前的研究使用指数函数来计算空间协方差矩阵。考虑的两种替代方法是条件自回归模型和同步自回归模型。此外,还为利用随机线性高原模型寻找氮的最佳值提供了新的分析解决方案。对各种模型的准确性和计算负担进行比较后发现,限制条件大大减轻了计算负担,但在所考虑的数据集中牺牲了一些准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Site-specific nitrogen recommendation: fast, accurate, and feasible Bayesian kriging

Site-specific nitrogen recommendation: fast, accurate, and feasible Bayesian kriging

Bayesian Kriging (BK) provides a way to estimate regression models where the parameters are smoothed across space. Such estimates could help guide site-specific fertilizer recommendations. One advantage of BK is that it can readily fill in the missing values that are common in yield monitor data. The problem is that previous methods are too computationally intensive to be commercially feasible when estimating a nonlinear production function. This paper sought to increase computational speed by imposing restrictions on the spatial covariance matrix. Previous research used an exponential function for the spatial covariance matrix. The two alternatives considered are the conditional autoregressive and simultaneous autoregressive models. In addition, a new analytical solution is provided for finding the optimal value of nitrogen with a stochastic linear plateau model. A comparison among models in the accuracy and computational burden shows that the restrictions significantly reduced the computational burden, although they did sacrifice some accuracy in the dataset considered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信