实体瘤内的多细胞免疫生态型可预测免疫检查点抑制剂的实际治疗效果

Xuefeng Wang, Tingyi Li, Islam Eljilany, Vineeth Sukrithan, Aakrosh Ratan, Martin Mccarter, John Carpten, Howard Colman, Alexandra P. Ikeguchi, Igor Puzanov, Susanne Arnold, Michelle Churchman, Patrick Hwu, Paulo C. Rodriguez, William S. Dalton, George J. Weiner, Ahmad A. Tarhini
{"title":"实体瘤内的多细胞免疫生态型可预测免疫检查点抑制剂的实际治疗效果","authors":"Xuefeng Wang, Tingyi Li, Islam Eljilany, Vineeth Sukrithan, Aakrosh Ratan, Martin Mccarter, John Carpten, Howard Colman, Alexandra P. Ikeguchi, Igor Puzanov, Susanne Arnold, Michelle Churchman, Patrick Hwu, Paulo C. Rodriguez, William S. Dalton, George J. Weiner, Ahmad A. Tarhini","doi":"10.1101/2024.07.19.24310726","DOIUrl":null,"url":null,"abstract":"Background: Cancer initiation, progression, and immune evasion depend on the tumor microenvironment (TME). Thus, understanding the TME immune architecture is essential for understanding tumor metastasis and therapy response. This study aimed to create an immune cell states (CSs) atlas using bulk RNA-seq data enriched by eco-type analyses to resolve the complex immune architectures in the TME. Methods: We employed EcoTyper, a machine-learning (ML) framework, to study the real-world prognostic significance of immune CSs and multicellular ecosystems, utilizing molecular data from 1,610 patients with multiple malignancies who underwent immune checkpoint inhibitor (ICI) therapy within the ORIEN Avatar cohort, a well-annotated real-world dataset. Results: Our analysis revealed consistent ICI-specific prognostic TME carcinoma ecotypes (CEs) (including CE1, CE9, CE10) across our pan-cancer dataset, where CE1 being more lymphocyte-deficient and CE10 being more proinflammatory. Also, the analysis of specific immune CSs across different cancers showed consistent CD8+ and CD4+ T cell CS distribution patterns. Furthermore, survival analysis of the ORIEN ICI cohort demonstrated that ecotype CE9 is associated with the most favorable survival outcomes, while CE2 is linked to the least favorable outcomes. Notably, the melanoma-specific prognostic EcoTyper model confirmed that lower predicted risk scores are associated with improved survival and better response to immunotherapy. Finally, de novo discovery of ecotypes in the ORIEN ICI dataset identified Ecotype E3 as significantly associated with poorer survival outcomes.\nConclusion: Our findings offer important insights into refining the patient selection process for immunotherapy in real-world practice and guiding the creation of novel therapeutic strategies to target specific ecotypes within the TME.","PeriodicalId":501437,"journal":{"name":"medRxiv - Oncology","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multicellular immune ecotypes within solid tumors predict real-world therapeutic benefits with immune checkpoint inhibitors\",\"authors\":\"Xuefeng Wang, Tingyi Li, Islam Eljilany, Vineeth Sukrithan, Aakrosh Ratan, Martin Mccarter, John Carpten, Howard Colman, Alexandra P. Ikeguchi, Igor Puzanov, Susanne Arnold, Michelle Churchman, Patrick Hwu, Paulo C. Rodriguez, William S. Dalton, George J. Weiner, Ahmad A. Tarhini\",\"doi\":\"10.1101/2024.07.19.24310726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Cancer initiation, progression, and immune evasion depend on the tumor microenvironment (TME). Thus, understanding the TME immune architecture is essential for understanding tumor metastasis and therapy response. This study aimed to create an immune cell states (CSs) atlas using bulk RNA-seq data enriched by eco-type analyses to resolve the complex immune architectures in the TME. Methods: We employed EcoTyper, a machine-learning (ML) framework, to study the real-world prognostic significance of immune CSs and multicellular ecosystems, utilizing molecular data from 1,610 patients with multiple malignancies who underwent immune checkpoint inhibitor (ICI) therapy within the ORIEN Avatar cohort, a well-annotated real-world dataset. Results: Our analysis revealed consistent ICI-specific prognostic TME carcinoma ecotypes (CEs) (including CE1, CE9, CE10) across our pan-cancer dataset, where CE1 being more lymphocyte-deficient and CE10 being more proinflammatory. Also, the analysis of specific immune CSs across different cancers showed consistent CD8+ and CD4+ T cell CS distribution patterns. Furthermore, survival analysis of the ORIEN ICI cohort demonstrated that ecotype CE9 is associated with the most favorable survival outcomes, while CE2 is linked to the least favorable outcomes. Notably, the melanoma-specific prognostic EcoTyper model confirmed that lower predicted risk scores are associated with improved survival and better response to immunotherapy. Finally, de novo discovery of ecotypes in the ORIEN ICI dataset identified Ecotype E3 as significantly associated with poorer survival outcomes.\\nConclusion: Our findings offer important insights into refining the patient selection process for immunotherapy in real-world practice and guiding the creation of novel therapeutic strategies to target specific ecotypes within the TME.\",\"PeriodicalId\":501437,\"journal\":{\"name\":\"medRxiv - Oncology\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.19.24310726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.19.24310726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:癌症的发生、发展和免疫逃避取决于肿瘤微环境(TME)。因此,了解肿瘤微环境的免疫结构对于了解肿瘤转移和治疗反应至关重要。本研究旨在利用通过生态类型分析富集的大量 RNA-seq 数据创建免疫细胞状态(CSs)图谱,以解析 TME 中复杂的免疫结构。方法:我们采用了机器学习(ML)框架 EcoTyper,利用 ORIEN Avatar 队列中 1610 名接受免疫检查点抑制剂(ICI)治疗的多种恶性肿瘤患者的分子数据,研究了免疫细胞状态和多细胞生态系统在现实世界中的预后意义。结果我们的分析表明,在我们的泛癌症数据集中,ICI特异性预后TME癌生态型(CE)(包括CE1、CE9和CE10)是一致的,其中CE1更具淋巴细胞缺陷性,CE10更具促炎症性。此外,对不同癌症的特异性免疫CS分析表明,CD8+和CD4+ T细胞CS分布模式一致。此外,对 ORIEN ICI 队列的生存分析表明,生态型 CE9 与最有利的生存结果相关,而 CE2 与最不利的结果相关。值得注意的是,黑色素瘤特异性预后EcoTyper模型证实,较低的预测风险评分与生存率的提高和对免疫疗法更好的反应有关。最后,在ORIEN ICI数据集中重新发现的生态型确定了生态型E3与较差的生存结果显著相关:我们的研究结果为在现实世界中完善免疫疗法的患者选择过程提供了重要见解,并指导了针对TME中特定生态型的新型治疗策略的制定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multicellular immune ecotypes within solid tumors predict real-world therapeutic benefits with immune checkpoint inhibitors
Background: Cancer initiation, progression, and immune evasion depend on the tumor microenvironment (TME). Thus, understanding the TME immune architecture is essential for understanding tumor metastasis and therapy response. This study aimed to create an immune cell states (CSs) atlas using bulk RNA-seq data enriched by eco-type analyses to resolve the complex immune architectures in the TME. Methods: We employed EcoTyper, a machine-learning (ML) framework, to study the real-world prognostic significance of immune CSs and multicellular ecosystems, utilizing molecular data from 1,610 patients with multiple malignancies who underwent immune checkpoint inhibitor (ICI) therapy within the ORIEN Avatar cohort, a well-annotated real-world dataset. Results: Our analysis revealed consistent ICI-specific prognostic TME carcinoma ecotypes (CEs) (including CE1, CE9, CE10) across our pan-cancer dataset, where CE1 being more lymphocyte-deficient and CE10 being more proinflammatory. Also, the analysis of specific immune CSs across different cancers showed consistent CD8+ and CD4+ T cell CS distribution patterns. Furthermore, survival analysis of the ORIEN ICI cohort demonstrated that ecotype CE9 is associated with the most favorable survival outcomes, while CE2 is linked to the least favorable outcomes. Notably, the melanoma-specific prognostic EcoTyper model confirmed that lower predicted risk scores are associated with improved survival and better response to immunotherapy. Finally, de novo discovery of ecotypes in the ORIEN ICI dataset identified Ecotype E3 as significantly associated with poorer survival outcomes. Conclusion: Our findings offer important insights into refining the patient selection process for immunotherapy in real-world practice and guiding the creation of novel therapeutic strategies to target specific ecotypes within the TME.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信