{"title":"初级分形几何3.复皮索特因子意味着有限类型","authors":"Christoph Bandt","doi":"10.1007/s00454-024-00678-2","DOIUrl":null,"url":null,"abstract":"<p>Self-similar sets require a separation condition to admit a nice mathematical structure. The classical open set condition (OSC) is difficult to verify. Zerner proved that there is a positive and finite Hausdorff measure for a weaker separation property which is always fulfilled for crystallographic data. Ngai and Wang gave more specific results for a finite type property (FT), and for algebraic data with a real Pisot expansion factor. We show how the algorithmic FT concept of Bandt and Mesing relates to the property of Ngai and Wang. Merits and limitations of the FT algorithm are discussed. Our main result says that FT is always true in the complex plane if the similarity mappings are given by a complex Pisot expansion factor <span>\\(\\lambda \\)</span> and algebraic integers in the number field generated by <span>\\(\\lambda .\\)</span> This extends the previous results and opens the door to huge classes of separated self-similar sets, with large complexity and an appearance of natural textures. Numerous examples are provided.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"12 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elementary Fractal Geometry. 3. Complex Pisot Factors Imply Finite Type\",\"authors\":\"Christoph Bandt\",\"doi\":\"10.1007/s00454-024-00678-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Self-similar sets require a separation condition to admit a nice mathematical structure. The classical open set condition (OSC) is difficult to verify. Zerner proved that there is a positive and finite Hausdorff measure for a weaker separation property which is always fulfilled for crystallographic data. Ngai and Wang gave more specific results for a finite type property (FT), and for algebraic data with a real Pisot expansion factor. We show how the algorithmic FT concept of Bandt and Mesing relates to the property of Ngai and Wang. Merits and limitations of the FT algorithm are discussed. Our main result says that FT is always true in the complex plane if the similarity mappings are given by a complex Pisot expansion factor <span>\\\\(\\\\lambda \\\\)</span> and algebraic integers in the number field generated by <span>\\\\(\\\\lambda .\\\\)</span> This extends the previous results and opens the door to huge classes of separated self-similar sets, with large complexity and an appearance of natural textures. Numerous examples are provided.</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00678-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00678-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
自相似集合需要一个分离条件,才能获得良好的数学结构。经典的开放集条件(OSC)很难验证。泽纳证明,对于较弱的分离性质,存在一个正的和有限的豪斯多夫度量,而对于晶体学数据,这个分离性质总是满足的。Ngai 和 Wang 针对有限类型属性(FT)和具有实 Pisot 扩展因子的代数数据给出了更具体的结果。我们展示了 Bandt 和 Mesing 的算法有限类型性质概念与 Ngai 和 Wang 的性质之间的关系。我们还讨论了 FT 算法的优点和局限性。我们的主要结果表明,如果相似性映射是由复数皮索特扩展因子(\λ\)和由\(\λ.\)产生的数域中的代数整数给出的,那么在复平面上FT总是真实的。这扩展了以前的结果,并为具有大复杂性和自然纹理外观的巨大类分离自相似集打开了大门。本文提供了大量实例。
Elementary Fractal Geometry. 3. Complex Pisot Factors Imply Finite Type
Self-similar sets require a separation condition to admit a nice mathematical structure. The classical open set condition (OSC) is difficult to verify. Zerner proved that there is a positive and finite Hausdorff measure for a weaker separation property which is always fulfilled for crystallographic data. Ngai and Wang gave more specific results for a finite type property (FT), and for algebraic data with a real Pisot expansion factor. We show how the algorithmic FT concept of Bandt and Mesing relates to the property of Ngai and Wang. Merits and limitations of the FT algorithm are discussed. Our main result says that FT is always true in the complex plane if the similarity mappings are given by a complex Pisot expansion factor \(\lambda \) and algebraic integers in the number field generated by \(\lambda .\) This extends the previous results and opens the door to huge classes of separated self-similar sets, with large complexity and an appearance of natural textures. Numerous examples are provided.
期刊介绍:
Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.