初级分形几何3.复皮索特因子意味着有限类型

Pub Date : 2024-07-20 DOI:10.1007/s00454-024-00678-2
Christoph Bandt
{"title":"初级分形几何3.复皮索特因子意味着有限类型","authors":"Christoph Bandt","doi":"10.1007/s00454-024-00678-2","DOIUrl":null,"url":null,"abstract":"<p>Self-similar sets require a separation condition to admit a nice mathematical structure. The classical open set condition (OSC) is difficult to verify. Zerner proved that there is a positive and finite Hausdorff measure for a weaker separation property which is always fulfilled for crystallographic data. Ngai and Wang gave more specific results for a finite type property (FT), and for algebraic data with a real Pisot expansion factor. We show how the algorithmic FT concept of Bandt and Mesing relates to the property of Ngai and Wang. Merits and limitations of the FT algorithm are discussed. Our main result says that FT is always true in the complex plane if the similarity mappings are given by a complex Pisot expansion factor <span>\\(\\lambda \\)</span> and algebraic integers in the number field generated by <span>\\(\\lambda .\\)</span> This extends the previous results and opens the door to huge classes of separated self-similar sets, with large complexity and an appearance of natural textures. Numerous examples are provided.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elementary Fractal Geometry. 3. Complex Pisot Factors Imply Finite Type\",\"authors\":\"Christoph Bandt\",\"doi\":\"10.1007/s00454-024-00678-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Self-similar sets require a separation condition to admit a nice mathematical structure. The classical open set condition (OSC) is difficult to verify. Zerner proved that there is a positive and finite Hausdorff measure for a weaker separation property which is always fulfilled for crystallographic data. Ngai and Wang gave more specific results for a finite type property (FT), and for algebraic data with a real Pisot expansion factor. We show how the algorithmic FT concept of Bandt and Mesing relates to the property of Ngai and Wang. Merits and limitations of the FT algorithm are discussed. Our main result says that FT is always true in the complex plane if the similarity mappings are given by a complex Pisot expansion factor <span>\\\\(\\\\lambda \\\\)</span> and algebraic integers in the number field generated by <span>\\\\(\\\\lambda .\\\\)</span> This extends the previous results and opens the door to huge classes of separated self-similar sets, with large complexity and an appearance of natural textures. Numerous examples are provided.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00678-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00678-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自相似集合需要一个分离条件,才能获得良好的数学结构。经典的开放集条件(OSC)很难验证。泽纳证明,对于较弱的分离性质,存在一个正的和有限的豪斯多夫度量,而对于晶体学数据,这个分离性质总是满足的。Ngai 和 Wang 针对有限类型属性(FT)和具有实 Pisot 扩展因子的代数数据给出了更具体的结果。我们展示了 Bandt 和 Mesing 的算法有限类型性质概念与 Ngai 和 Wang 的性质之间的关系。我们还讨论了 FT 算法的优点和局限性。我们的主要结果表明,如果相似性映射是由复数皮索特扩展因子(\λ\)和由\(\λ.\)产生的数域中的代数整数给出的,那么在复平面上FT总是真实的。这扩展了以前的结果,并为具有大复杂性和自然纹理外观的巨大类分离自相似集打开了大门。本文提供了大量实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Elementary Fractal Geometry. 3. Complex Pisot Factors Imply Finite Type

分享
查看原文
Elementary Fractal Geometry. 3. Complex Pisot Factors Imply Finite Type

Self-similar sets require a separation condition to admit a nice mathematical structure. The classical open set condition (OSC) is difficult to verify. Zerner proved that there is a positive and finite Hausdorff measure for a weaker separation property which is always fulfilled for crystallographic data. Ngai and Wang gave more specific results for a finite type property (FT), and for algebraic data with a real Pisot expansion factor. We show how the algorithmic FT concept of Bandt and Mesing relates to the property of Ngai and Wang. Merits and limitations of the FT algorithm are discussed. Our main result says that FT is always true in the complex plane if the similarity mappings are given by a complex Pisot expansion factor \(\lambda \) and algebraic integers in the number field generated by \(\lambda .\) This extends the previous results and opens the door to huge classes of separated self-similar sets, with large complexity and an appearance of natural textures. Numerous examples are provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信