澳大利亚东南部的夏季热浪

IF 3 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Cameron R. Henderson, Michael J. Reeder, Teresa J. Parker, Julian F. Quinting, Christian Jakob
{"title":"澳大利亚东南部的夏季热浪","authors":"Cameron R. Henderson, Michael J. Reeder, Teresa J. Parker, Julian F. Quinting, Christian Jakob","doi":"10.1002/qj.4816","DOIUrl":null,"url":null,"abstract":"Heatwaves in southeastern Australia have characteristic weather patterns that are well understood but are outnumbered by days with similar synoptic‐scale patterns that are not heatwaves. Accordingly, the aim of this study is to identify the key differences between heatwave and non‐heatwave days from 40 years of reanalysis data. A synoptic climatology of seven weather states was constructed by ‐means cluster analysis. Four of these states account for more than 80% of heatwave days across south‐and‐central eastern Australia. Moreover, the spatial maxima in the frequency of the heatwave days are distinct and geographically separated. Heatwave days have a stronger upper anticyclone or ridge that has propagated further equatorward in comparison with non‐heatwave days. The air upstream of the ridge is more humid on heatwave days, whereas downstream of the ridge the air is much drier. These dry anomalies are co‐located with midtropospheric subsidence and the moist anomalies with ascent, and their respective spatial distributions are consistent with regions of adiabatic warming and latent heating identified in recent studies of southeast Australian heatwaves. The corresponding vertical motion on non‐heatwave days is weaker and shifted further poleward. Southeast Queensland heatwave days exhibit increased baroclinicity over the Australian Subtropics and reduced rainfall over Queensland. Further south and west, heatwave days are associated with more amplified Rossby waves and increased rainfall over the Australian Tropics. Anticyclonic Rossby wave breaking is greatly enhanced on heatwave days south of 30°S. For every day in each of these four weather states, the 3‐day‐mean maximum temperature in the region of peak heatwave day frequency is positively correlated with 500 hPa geopotential height anomalies on the equatorward flank of the cluster‐mean upper ridge. These findings underline the importance of equatorward Rossby wave propagation in the dynamics of southeast Australian heatwaves.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Summer Heatwaves in Southeastern Australia\",\"authors\":\"Cameron R. Henderson, Michael J. Reeder, Teresa J. Parker, Julian F. Quinting, Christian Jakob\",\"doi\":\"10.1002/qj.4816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heatwaves in southeastern Australia have characteristic weather patterns that are well understood but are outnumbered by days with similar synoptic‐scale patterns that are not heatwaves. Accordingly, the aim of this study is to identify the key differences between heatwave and non‐heatwave days from 40 years of reanalysis data. A synoptic climatology of seven weather states was constructed by ‐means cluster analysis. Four of these states account for more than 80% of heatwave days across south‐and‐central eastern Australia. Moreover, the spatial maxima in the frequency of the heatwave days are distinct and geographically separated. Heatwave days have a stronger upper anticyclone or ridge that has propagated further equatorward in comparison with non‐heatwave days. The air upstream of the ridge is more humid on heatwave days, whereas downstream of the ridge the air is much drier. These dry anomalies are co‐located with midtropospheric subsidence and the moist anomalies with ascent, and their respective spatial distributions are consistent with regions of adiabatic warming and latent heating identified in recent studies of southeast Australian heatwaves. The corresponding vertical motion on non‐heatwave days is weaker and shifted further poleward. Southeast Queensland heatwave days exhibit increased baroclinicity over the Australian Subtropics and reduced rainfall over Queensland. Further south and west, heatwave days are associated with more amplified Rossby waves and increased rainfall over the Australian Tropics. Anticyclonic Rossby wave breaking is greatly enhanced on heatwave days south of 30°S. For every day in each of these four weather states, the 3‐day‐mean maximum temperature in the region of peak heatwave day frequency is positively correlated with 500 hPa geopotential height anomalies on the equatorward flank of the cluster‐mean upper ridge. These findings underline the importance of equatorward Rossby wave propagation in the dynamics of southeast Australian heatwaves.\",\"PeriodicalId\":49646,\"journal\":{\"name\":\"Quarterly Journal of the Royal Meteorological Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of the Royal Meteorological Society\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/qj.4816\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4816","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

澳大利亚东南部的热浪具有特征性的天气模式,这些模式已被人们充分了解,但与之相比,热浪日更多的是具有类似同步尺度模式的非热浪日。因此,本研究旨在从 40 年的再分析数据中找出热浪日与非热浪日之间的主要差异。通过均值聚类分析,构建了七种天气状态的同步气候学。其中四个状态占整个澳大利亚中南部热浪日的 80% 以上。此外,热浪日频率的空间最大值在地理上是明显分开的。与非热浪日相比,热浪日的上游反气旋或气脊更强,向赤道传播得更远。在热浪日,海脊上游的空气更加潮湿,而海脊下游的空气则更加干燥。这些干燥异常与中对流层下沉同处一地,而潮湿异常则与上升同处一地,它们各自的空间分布与最近对澳大利亚东南部热浪的研究中发现的绝热升温和潜热升温区域一致。非热浪日的相应垂直运动较弱,并进一步向极地移动。昆士兰东南部热浪日在澳大利亚亚热带地区表现出更强的气压线性,昆士兰降雨量减少。再往南和往西,热浪日与澳大利亚热带地区的罗斯比波放大和降雨量增加有关。在南纬 30 度以南的热浪日,反气旋罗斯比波的破碎程度大大增强。在这四种天气状态中的每一天,热浪日频率峰值区域的 3 天平均最高气温与群集平均上脊赤道侧的 500 hPa 位势高度异常呈正相关。这些发现强调了赤道方向的罗斯比波传播在澳大利亚东南热浪动力学中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Summer Heatwaves in Southeastern Australia
Heatwaves in southeastern Australia have characteristic weather patterns that are well understood but are outnumbered by days with similar synoptic‐scale patterns that are not heatwaves. Accordingly, the aim of this study is to identify the key differences between heatwave and non‐heatwave days from 40 years of reanalysis data. A synoptic climatology of seven weather states was constructed by ‐means cluster analysis. Four of these states account for more than 80% of heatwave days across south‐and‐central eastern Australia. Moreover, the spatial maxima in the frequency of the heatwave days are distinct and geographically separated. Heatwave days have a stronger upper anticyclone or ridge that has propagated further equatorward in comparison with non‐heatwave days. The air upstream of the ridge is more humid on heatwave days, whereas downstream of the ridge the air is much drier. These dry anomalies are co‐located with midtropospheric subsidence and the moist anomalies with ascent, and their respective spatial distributions are consistent with regions of adiabatic warming and latent heating identified in recent studies of southeast Australian heatwaves. The corresponding vertical motion on non‐heatwave days is weaker and shifted further poleward. Southeast Queensland heatwave days exhibit increased baroclinicity over the Australian Subtropics and reduced rainfall over Queensland. Further south and west, heatwave days are associated with more amplified Rossby waves and increased rainfall over the Australian Tropics. Anticyclonic Rossby wave breaking is greatly enhanced on heatwave days south of 30°S. For every day in each of these four weather states, the 3‐day‐mean maximum temperature in the region of peak heatwave day frequency is positively correlated with 500 hPa geopotential height anomalies on the equatorward flank of the cluster‐mean upper ridge. These findings underline the importance of equatorward Rossby wave propagation in the dynamics of southeast Australian heatwaves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.80
自引率
4.50%
发文量
163
审稿时长
3-8 weeks
期刊介绍: The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues. The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信