整个空间上抛物线-椭圆形凯勒-西格尔系统的近周期解

IF 0.5 4区 数学 Q3 MATHEMATICS
Nguyen Thi Loan, Pham Truong Xuan
{"title":"整个空间上抛物线-椭圆形凯勒-西格尔系统的近周期解","authors":"Nguyen Thi Loan,&nbsp;Pham Truong Xuan","doi":"10.1007/s00013-024-02023-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the existence and uniqueness of almost periodic solutions for the parabolic-elliptic Keller–Segel system on the whole space <span>\\(\\mathbb {R}^n\\,\\, (n \\geqslant 4)\\)</span>. We work in the framework of critical spaces such as on the weak-Lorentz space <span>\\(L^{\\frac{n}{2},\\infty }(\\mathbb {R}^n)\\)</span>. Our method is based on the dispersive and smoothing estimates of the heat semigroup and fixed point arguments.\n</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost periodic solutions of the parabolic-elliptic Keller–Segel system on the whole space\",\"authors\":\"Nguyen Thi Loan,&nbsp;Pham Truong Xuan\",\"doi\":\"10.1007/s00013-024-02023-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we investigate the existence and uniqueness of almost periodic solutions for the parabolic-elliptic Keller–Segel system on the whole space <span>\\\\(\\\\mathbb {R}^n\\\\,\\\\, (n \\\\geqslant 4)\\\\)</span>. We work in the framework of critical spaces such as on the weak-Lorentz space <span>\\\\(L^{\\\\frac{n}{2},\\\\infty }(\\\\mathbb {R}^n)\\\\)</span>. Our method is based on the dispersive and smoothing estimates of the heat semigroup and fixed point arguments.\\n</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02023-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02023-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了整个空间 \(\mathbb {R}^n\,\, (n ≥geqslant 4)\) 上抛物线-椭圆 Keller-Segel 系统几乎周期解的存在性和唯一性。我们在临界空间的框架下工作,比如在弱洛伦兹空间(L^{frac{n}{2},\infty }(\mathbb {R}^n)\)上。我们的方法基于热半群的分散和平滑估计以及定点论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Almost periodic solutions of the parabolic-elliptic Keller–Segel system on the whole space

In this paper, we investigate the existence and uniqueness of almost periodic solutions for the parabolic-elliptic Keller–Segel system on the whole space \(\mathbb {R}^n\,\, (n \geqslant 4)\). We work in the framework of critical spaces such as on the weak-Lorentz space \(L^{\frac{n}{2},\infty }(\mathbb {R}^n)\). Our method is based on the dispersive and smoothing estimates of the heat semigroup and fixed point arguments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信