用菠萝植物提取的农业废弃物增强的可三维打印聚对苯二甲酸乙二醇酯复合丝的表征

IF 2.2 3区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
Jitendra Kumar, Vishal Mishra, Avinash Kumar, Sushant Negi
{"title":"用菠萝植物提取的农业废弃物增强的可三维打印聚对苯二甲酸乙二醇酯复合丝的表征","authors":"Jitendra Kumar, Vishal Mishra, Avinash Kumar, Sushant Negi","doi":"10.1177/07316844241263897","DOIUrl":null,"url":null,"abstract":"The aim of the current research is to develop a 3D printable PETG composite filament reinforced with pineapple fiber particulate (PALF-P). These filaments were produced using an extrusion technique, incorporating varying weight percentages (1.5%, 2.5%, 5%, and 7.5%) of PALF particles treated with a 5% NaOH chemical solution. Analytical techniques like Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD) evaluated the impact of this treatment. A comprehensive study of the resulting composite filaments’ mechanical and physical attributes revealed improved cohesion between the PETG matrix and PALF particles, enhancing the overall properties. Specifically, the incorporation of 5 wt % PALF particles showed the highest ultimate tensile strength (53.54 ± 2.7 MPa), Young’s modulus (1443 ± 72.22 MPa), and load-bearing capacity (104.97 ± 5.25 N). In contrast, 2.5% of particles had the least noticeable effect on mechanical properties. Moreover, the developed sustainable composite filament showed significant promise in advancing bio-composites through additive manufacturing, potentially contributing to sustainable manufacturing practices.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"39 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of 3D printable Polyethylene Terephthalate Glycol composite filament reinforced with agricultural waste derived from pineapple plant\",\"authors\":\"Jitendra Kumar, Vishal Mishra, Avinash Kumar, Sushant Negi\",\"doi\":\"10.1177/07316844241263897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the current research is to develop a 3D printable PETG composite filament reinforced with pineapple fiber particulate (PALF-P). These filaments were produced using an extrusion technique, incorporating varying weight percentages (1.5%, 2.5%, 5%, and 7.5%) of PALF particles treated with a 5% NaOH chemical solution. Analytical techniques like Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD) evaluated the impact of this treatment. A comprehensive study of the resulting composite filaments’ mechanical and physical attributes revealed improved cohesion between the PETG matrix and PALF particles, enhancing the overall properties. Specifically, the incorporation of 5 wt % PALF particles showed the highest ultimate tensile strength (53.54 ± 2.7 MPa), Young’s modulus (1443 ± 72.22 MPa), and load-bearing capacity (104.97 ± 5.25 N). In contrast, 2.5% of particles had the least noticeable effect on mechanical properties. Moreover, the developed sustainable composite filament showed significant promise in advancing bio-composites through additive manufacturing, potentially contributing to sustainable manufacturing practices.\",\"PeriodicalId\":16943,\"journal\":{\"name\":\"Journal of Reinforced Plastics and Composites\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Reinforced Plastics and Composites\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/07316844241263897\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reinforced Plastics and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/07316844241263897","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

当前研究的目的是开发一种用菠萝纤维颗粒(PALF-P)增强的可三维打印 PETG 复合长丝。这些长丝是采用挤压技术生产的,其中加入了不同重量百分比(1.5%、2.5%、5% 和 7.5%)的经 5%NaOH 化学溶液处理的 PALF 颗粒。傅立叶变换红外光谱(FTIR)和 X 射线衍射(XRD)等分析技术评估了这种处理方法的影响。对由此产生的复合长丝的机械和物理属性进行的综合研究表明,PETG 基体和 PALF 颗粒之间的内聚力得到了改善,从而提高了整体性能。具体来说,5 wt % 的 PALF 颗粒显示出最高的极限拉伸强度(53.54 ± 2.7 MPa)、杨氏模量(1443 ± 72.22 MPa)和承载能力(104.97 ± 5.25 N)。相比之下,2.5% 的颗粒对机械性能的影响最小。此外,所开发的可持续复合材料长丝在通过增材制造推进生物复合材料方面显示出巨大的前景,有可能为可持续制造实践做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of 3D printable Polyethylene Terephthalate Glycol composite filament reinforced with agricultural waste derived from pineapple plant
The aim of the current research is to develop a 3D printable PETG composite filament reinforced with pineapple fiber particulate (PALF-P). These filaments were produced using an extrusion technique, incorporating varying weight percentages (1.5%, 2.5%, 5%, and 7.5%) of PALF particles treated with a 5% NaOH chemical solution. Analytical techniques like Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD) evaluated the impact of this treatment. A comprehensive study of the resulting composite filaments’ mechanical and physical attributes revealed improved cohesion between the PETG matrix and PALF particles, enhancing the overall properties. Specifically, the incorporation of 5 wt % PALF particles showed the highest ultimate tensile strength (53.54 ± 2.7 MPa), Young’s modulus (1443 ± 72.22 MPa), and load-bearing capacity (104.97 ± 5.25 N). In contrast, 2.5% of particles had the least noticeable effect on mechanical properties. Moreover, the developed sustainable composite filament showed significant promise in advancing bio-composites through additive manufacturing, potentially contributing to sustainable manufacturing practices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Reinforced Plastics and Composites
Journal of Reinforced Plastics and Composites 工程技术-材料科学:复合
CiteScore
5.40
自引率
6.50%
发文量
82
审稿时长
1.3 months
期刊介绍: The Journal of Reinforced Plastics and Composites is a fully peer-reviewed international journal that publishes original research and review articles on a broad range of today''s reinforced plastics and composites including areas in: Constituent materials: matrix materials, reinforcements and coatings. Properties and performance: The results of testing, predictive models, and in-service evaluation of a wide range of materials are published, providing the reader with extensive properties data for reference. Analysis and design: Frequency reports on these subjects inform the reader of analytical techniques, design processes and the many design options available in materials composition. Processing and fabrication: There is increased interest among materials engineers in cost-effective processing. Applications: Reports on new materials R&D are often related to the service requirements of specific application areas, such as automotive, marine, construction and aviation. Reports on special topics are regularly included such as recycling, environmental effects, novel materials, computer-aided design, predictive modelling, and "smart" composite materials. "The articles in the Journal of Reinforced Plastics and Products are must reading for engineers in industry and for researchers working on leading edge problems" Professor Emeritus Stephen W Tsai National Sun Yat-sen University, Taiwan This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信