深层非常规气藏水力压裂传播影响因素研究

IF 0.6 4区 工程技术 Q4 ENERGY & FUELS
Sen Yang, Kaige Zheng, Jian Zhang, Nan Dai, Lintao Wang, Zeyang Wang, Haojie Wang
{"title":"深层非常规气藏水力压裂传播影响因素研究","authors":"Sen Yang, Kaige Zheng, Jian Zhang, Nan Dai, Lintao Wang, Zeyang Wang, Haojie Wang","doi":"10.1007/s10553-024-01737-3","DOIUrl":null,"url":null,"abstract":"<p>To fully understand the factors influencing hydraulic fracture propagation in deep unconventional gas reservoirs, this study takes a block in China as an example. Firstly, a comprehensive geological mechanics model of the reservoir is constructed. From the perspectives of discrete natural fracture modeling, hydraulic fracture propagation analysis, and hydraulic fracturing numerical modeling, an analysis model of the influencing factors of hydraulic fracture propagation in the reservoir is established. This model is then used to conduct an analysis of the influencing factors, laying the foundation for optimizing fracturing design and improving fracturing effectiveness. The study shows that among factors such as cluster spacing, fluid intensity, natural fracture line density, and horizontal stress difference, cluster spacing has the greatest impact on hydraulic fracture propagation in the reservoir, followed by fluid intensity, while horizontal stress difference has the least impact. Under the condition of gradually increasing cluster spacing, the modified reservoir volume will initially increase and then decrease. As fluid intensity gradually increases, the modified reservoir volume will also increase, but due to economic constraints, fluid intensity should not be excessively high. When the natural fracture line density is low, the rate of increase in modified reservoir volume is relatively fast as it increases. However, when the natural fracture line density is high, the rate of increase in modified reservoir volume slows down as it continues to increase. As the horizontal principal stress difference gradually increases, the modified reservoir volume will gradually decrease.</p>","PeriodicalId":9908,"journal":{"name":"Chemistry and Technology of Fuels and Oils","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Influencing Factors of Hydraulic Fracture Propagation in Deep Unconventional Gas Reservoirs\",\"authors\":\"Sen Yang, Kaige Zheng, Jian Zhang, Nan Dai, Lintao Wang, Zeyang Wang, Haojie Wang\",\"doi\":\"10.1007/s10553-024-01737-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To fully understand the factors influencing hydraulic fracture propagation in deep unconventional gas reservoirs, this study takes a block in China as an example. Firstly, a comprehensive geological mechanics model of the reservoir is constructed. From the perspectives of discrete natural fracture modeling, hydraulic fracture propagation analysis, and hydraulic fracturing numerical modeling, an analysis model of the influencing factors of hydraulic fracture propagation in the reservoir is established. This model is then used to conduct an analysis of the influencing factors, laying the foundation for optimizing fracturing design and improving fracturing effectiveness. The study shows that among factors such as cluster spacing, fluid intensity, natural fracture line density, and horizontal stress difference, cluster spacing has the greatest impact on hydraulic fracture propagation in the reservoir, followed by fluid intensity, while horizontal stress difference has the least impact. Under the condition of gradually increasing cluster spacing, the modified reservoir volume will initially increase and then decrease. As fluid intensity gradually increases, the modified reservoir volume will also increase, but due to economic constraints, fluid intensity should not be excessively high. When the natural fracture line density is low, the rate of increase in modified reservoir volume is relatively fast as it increases. However, when the natural fracture line density is high, the rate of increase in modified reservoir volume slows down as it continues to increase. As the horizontal principal stress difference gradually increases, the modified reservoir volume will gradually decrease.</p>\",\"PeriodicalId\":9908,\"journal\":{\"name\":\"Chemistry and Technology of Fuels and Oils\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry and Technology of Fuels and Oils\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10553-024-01737-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Technology of Fuels and Oils","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10553-024-01737-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

为全面了解深层非常规气藏水力压裂传播的影响因素,本研究以中国某区块为例。首先,构建了该储层的综合地质力学模型。从离散天然裂缝建模、水力压裂传播分析、水力压裂数值建模等角度,建立储层水力压裂传播影响因素分析模型。然后利用该模型对影响因素进行分析,为优化压裂设计、提高压裂效果奠定基础。研究表明,在丛集间距、流体强度、天然裂缝线密度和水平应力差等因素中,丛集间距对储层水力压裂传播的影响最大,其次是流体强度,而水平应力差的影响最小。在簇间距逐渐增大的条件下,修正储层体积会先增大后减小。随着流体强度的逐渐增大,修正储层体积也会增大,但受经济条件限制,流体强度不宜过高。当天然裂缝线密度较低时,改良储层体积的增加速度相对较快。然而,当天然裂缝线密度较高时,改良储层体积的增加速度会随着其继续增加而减慢。随着水平主应力差的逐渐增大,修正储层体积也会逐渐减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Study on the Influencing Factors of Hydraulic Fracture Propagation in Deep Unconventional Gas Reservoirs

Study on the Influencing Factors of Hydraulic Fracture Propagation in Deep Unconventional Gas Reservoirs

To fully understand the factors influencing hydraulic fracture propagation in deep unconventional gas reservoirs, this study takes a block in China as an example. Firstly, a comprehensive geological mechanics model of the reservoir is constructed. From the perspectives of discrete natural fracture modeling, hydraulic fracture propagation analysis, and hydraulic fracturing numerical modeling, an analysis model of the influencing factors of hydraulic fracture propagation in the reservoir is established. This model is then used to conduct an analysis of the influencing factors, laying the foundation for optimizing fracturing design and improving fracturing effectiveness. The study shows that among factors such as cluster spacing, fluid intensity, natural fracture line density, and horizontal stress difference, cluster spacing has the greatest impact on hydraulic fracture propagation in the reservoir, followed by fluid intensity, while horizontal stress difference has the least impact. Under the condition of gradually increasing cluster spacing, the modified reservoir volume will initially increase and then decrease. As fluid intensity gradually increases, the modified reservoir volume will also increase, but due to economic constraints, fluid intensity should not be excessively high. When the natural fracture line density is low, the rate of increase in modified reservoir volume is relatively fast as it increases. However, when the natural fracture line density is high, the rate of increase in modified reservoir volume slows down as it continues to increase. As the horizontal principal stress difference gradually increases, the modified reservoir volume will gradually decrease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry and Technology of Fuels and Oils
Chemistry and Technology of Fuels and Oils 工程技术-工程:化工
CiteScore
0.90
自引率
16.70%
发文量
119
审稿时长
1.0 months
期刊介绍: Chemistry and Technology of Fuels and Oils publishes reports on improvements in the processing of petroleum and natural gas and cracking and refining techniques for the production of high-quality fuels, oils, greases, specialty fluids, additives and synthetics. The journal includes timely articles on the demulsification, desalting, and desulfurizing of crude oil; new flow plans for refineries; platforming, isomerization, catalytic reforming, and alkylation processes for obtaining aromatic hydrocarbons and high-octane gasoline; methods of producing ethylene, acetylene, benzene, acids, alcohols, esters, and other compounds from petroleum, as well as hydrogen from natural gas and liquid products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信