Assel Istlyaup, Lyudmila Myasnikova, Daulet Sergeyev, Marina Konuhova, Anatoli I. Popov
{"title":"NaF 纳米管的状态密度和能带结构的计算机模拟","authors":"Assel Istlyaup, Lyudmila Myasnikova, Daulet Sergeyev, Marina Konuhova, Anatoli I. Popov","doi":"10.1063/10.0026283","DOIUrl":null,"url":null,"abstract":"Modern solid-state physics increasingly focuses on the study of nanomaterials and the development of nanotechnologies. Various theoretical methods and research technologies are actively used to elucidate the significance of experimental results related to the study of solid-state defects. Progress in this field is likely associated with advancements in computer technologies and the development of modern quantum-chemical packages. The obtained spectra reveal a certain number of energy levels in the energy range from –30 to 20 eV. We determine the band structure, density of states, and total energy of NaF nanotubes with parameters (m, n), where m = 4, 5, 6, 8, and n = 1, 2, 3. The characteristics modeling is conducted using the Atomistix ToolKit software package and Virtual NanoLab program. This work presents the results of computer modeling of the density of states and total energy of NaF nanotubes within the framework of density functional theory. The obtained results allow classifying the tubular structures of NaF as quantum dots and contribute to further research into alkali metal halide crystals in nanostructures.","PeriodicalId":18077,"journal":{"name":"Low Temperature Physics","volume":"84 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computer simulation of the density of states and band structure of NaF nanotubes\",\"authors\":\"Assel Istlyaup, Lyudmila Myasnikova, Daulet Sergeyev, Marina Konuhova, Anatoli I. Popov\",\"doi\":\"10.1063/10.0026283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern solid-state physics increasingly focuses on the study of nanomaterials and the development of nanotechnologies. Various theoretical methods and research technologies are actively used to elucidate the significance of experimental results related to the study of solid-state defects. Progress in this field is likely associated with advancements in computer technologies and the development of modern quantum-chemical packages. The obtained spectra reveal a certain number of energy levels in the energy range from –30 to 20 eV. We determine the band structure, density of states, and total energy of NaF nanotubes with parameters (m, n), where m = 4, 5, 6, 8, and n = 1, 2, 3. The characteristics modeling is conducted using the Atomistix ToolKit software package and Virtual NanoLab program. This work presents the results of computer modeling of the density of states and total energy of NaF nanotubes within the framework of density functional theory. The obtained results allow classifying the tubular structures of NaF as quantum dots and contribute to further research into alkali metal halide crystals in nanostructures.\",\"PeriodicalId\":18077,\"journal\":{\"name\":\"Low Temperature Physics\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Low Temperature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/10.0026283\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/10.0026283","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Computer simulation of the density of states and band structure of NaF nanotubes
Modern solid-state physics increasingly focuses on the study of nanomaterials and the development of nanotechnologies. Various theoretical methods and research technologies are actively used to elucidate the significance of experimental results related to the study of solid-state defects. Progress in this field is likely associated with advancements in computer technologies and the development of modern quantum-chemical packages. The obtained spectra reveal a certain number of energy levels in the energy range from –30 to 20 eV. We determine the band structure, density of states, and total energy of NaF nanotubes with parameters (m, n), where m = 4, 5, 6, 8, and n = 1, 2, 3. The characteristics modeling is conducted using the Atomistix ToolKit software package and Virtual NanoLab program. This work presents the results of computer modeling of the density of states and total energy of NaF nanotubes within the framework of density functional theory. The obtained results allow classifying the tubular structures of NaF as quantum dots and contribute to further research into alkali metal halide crystals in nanostructures.
期刊介绍:
Guided by an international editorial board, Low Temperature Physics (LTP) communicates the results of important experimental and theoretical studies conducted at low temperatures. LTP offers key work in such areas as superconductivity, magnetism, lattice dynamics, quantum liquids and crystals, cryocrystals, low-dimensional and disordered systems, electronic properties of normal metals and alloys, and critical phenomena. The journal publishes original articles on new experimental and theoretical results as well as review articles, brief communications, memoirs, and biographies.
Low Temperature Physics, a translation of the copyrighted Journal FIZIKA NIZKIKH TEMPERATUR, is a monthly journal containing English reports of current research in the field of the low temperature physics. The translation began with the 1975 issues. One volume is published annually beginning with the January issues.