针对多尺度 PDE 的同质化到精细尺度映射的贝叶斯深度算子学习

Zecheng Zhang, Christian Moya, Wing Tat Leung, Guang Lin, Hayden Schaeffer
{"title":"针对多尺度 PDE 的同质化到精细尺度映射的贝叶斯深度算子学习","authors":"Zecheng Zhang, Christian Moya, Wing Tat Leung, Guang Lin, Hayden Schaeffer","doi":"10.1137/23m160342x","DOIUrl":null,"url":null,"abstract":"Multiscale Modeling &amp;Simulation, Volume 22, Issue 3, Page 956-972, September 2024. <br/> Abstract. We present a new framework for computing fine-scale solutions of multiscale partial differential equations (PDEs) using operator learning tools. Obtaining fine-scale solutions of multiscale PDEs can be challenging, but there are many inexpensive computational methods for obtaining coarse-scale solutions. Additionally, in many real-world applications, fine-scale solutions can only be observed at a limited number of locations. In order to obtain approximations or predictions of fine-scale solutions over general regions of interest, we propose to learn the operator mapping from coarse-scale solutions to fine-scale solutions using observations of a limited number of (possible noisy) fine-scale solutions. The approach is to train multi-fidelity homogenization maps using mathematically motivated neural operators. The operator learning framework can efficiently obtain the solution of multiscale PDEs at any arbitrary point, making our proposed framework a mesh-free solver. We verify our results on multiple numerical examples showing that our approach is an efficient mesh-free solver for multiscale PDEs.","PeriodicalId":501053,"journal":{"name":"Multiscale Modeling and Simulation","volume":"204 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Deep Operator Learning for Homogenized to Fine-Scale Maps for Multiscale PDE\",\"authors\":\"Zecheng Zhang, Christian Moya, Wing Tat Leung, Guang Lin, Hayden Schaeffer\",\"doi\":\"10.1137/23m160342x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiscale Modeling &amp;Simulation, Volume 22, Issue 3, Page 956-972, September 2024. <br/> Abstract. We present a new framework for computing fine-scale solutions of multiscale partial differential equations (PDEs) using operator learning tools. Obtaining fine-scale solutions of multiscale PDEs can be challenging, but there are many inexpensive computational methods for obtaining coarse-scale solutions. Additionally, in many real-world applications, fine-scale solutions can only be observed at a limited number of locations. In order to obtain approximations or predictions of fine-scale solutions over general regions of interest, we propose to learn the operator mapping from coarse-scale solutions to fine-scale solutions using observations of a limited number of (possible noisy) fine-scale solutions. The approach is to train multi-fidelity homogenization maps using mathematically motivated neural operators. The operator learning framework can efficiently obtain the solution of multiscale PDEs at any arbitrary point, making our proposed framework a mesh-free solver. We verify our results on multiple numerical examples showing that our approach is an efficient mesh-free solver for multiscale PDEs.\",\"PeriodicalId\":501053,\"journal\":{\"name\":\"Multiscale Modeling and Simulation\",\"volume\":\"204 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale Modeling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/23m160342x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/23m160342x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多尺度建模与仿真》,第 22 卷第 3 期,第 956-972 页,2024 年 9 月。 摘要我们提出了一个利用算子学习工具计算多尺度偏微分方程(PDE)精细解的新框架。获得多尺度偏微分方程的细尺度解可能具有挑战性,但有很多廉价的计算方法可以获得粗尺度解。此外,在许多实际应用中,只能在有限的位置观察到细尺度解。为了获得一般感兴趣区域的细尺度解的近似值或预测值,我们建议利用对有限数量的(可能有噪声的)细尺度解的观测,学习从粗尺度解到细尺度解的算子映射。这种方法是利用数学上的神经算子来训练多保真度同质化映射。算子学习框架可以在任意点上高效地获得多尺度 PDE 的解,这使我们提出的框架成为一种无网格求解器。我们在多个数值示例中验证了我们的结果,表明我们的方法是一种高效的多尺度 PDE 无网格求解器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Deep Operator Learning for Homogenized to Fine-Scale Maps for Multiscale PDE
Multiscale Modeling &Simulation, Volume 22, Issue 3, Page 956-972, September 2024.
Abstract. We present a new framework for computing fine-scale solutions of multiscale partial differential equations (PDEs) using operator learning tools. Obtaining fine-scale solutions of multiscale PDEs can be challenging, but there are many inexpensive computational methods for obtaining coarse-scale solutions. Additionally, in many real-world applications, fine-scale solutions can only be observed at a limited number of locations. In order to obtain approximations or predictions of fine-scale solutions over general regions of interest, we propose to learn the operator mapping from coarse-scale solutions to fine-scale solutions using observations of a limited number of (possible noisy) fine-scale solutions. The approach is to train multi-fidelity homogenization maps using mathematically motivated neural operators. The operator learning framework can efficiently obtain the solution of multiscale PDEs at any arbitrary point, making our proposed framework a mesh-free solver. We verify our results on multiple numerical examples showing that our approach is an efficient mesh-free solver for multiscale PDEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信