某些弯曲函数数的渐近界限

Vladimir N. Potapov, Ferruh Özbudak
{"title":"某些弯曲函数数的渐近界限","authors":"Vladimir N. Potapov, Ferruh Özbudak","doi":"10.1007/s12095-024-00726-x","DOIUrl":null,"url":null,"abstract":"<p>Using recent results of Keevash et al. [10] and Eberhard et al. [8] together with further new detailed techniques in combinatorics, we present constructions of two concrete families of generalized Maiorana-McFarland bent functions. Our constructions improve the lower bounds on the number of bent functions in <i>n</i> variables over a finite field <span>\\({\\mathbb F}_p\\)</span> if <i>p</i> is odd and <i>n</i> is odd in the limit as <i>n</i> tends to infinity. Moreover we obtain the asymptotically exact number of two dimensional vectorial Maiorana-McFarland bent functions in <i>n</i> variables over <span>\\({\\mathbb F}_2\\)</span> as <i>n</i> tends to infinity.</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic bounds on the numbers of certain bent functions\",\"authors\":\"Vladimir N. Potapov, Ferruh Özbudak\",\"doi\":\"10.1007/s12095-024-00726-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using recent results of Keevash et al. [10] and Eberhard et al. [8] together with further new detailed techniques in combinatorics, we present constructions of two concrete families of generalized Maiorana-McFarland bent functions. Our constructions improve the lower bounds on the number of bent functions in <i>n</i> variables over a finite field <span>\\\\({\\\\mathbb F}_p\\\\)</span> if <i>p</i> is odd and <i>n</i> is odd in the limit as <i>n</i> tends to infinity. Moreover we obtain the asymptotically exact number of two dimensional vectorial Maiorana-McFarland bent functions in <i>n</i> variables over <span>\\\\({\\\\mathbb F}_2\\\\)</span> as <i>n</i> tends to infinity.</p>\",\"PeriodicalId\":10788,\"journal\":{\"name\":\"Cryptography and Communications\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryptography and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12095-024-00726-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-024-00726-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用基瓦什等人[10]和埃伯哈德等人[8]的最新成果,以及组合论中进一步的新的详细技术,我们提出了广义马约拉纳-麦克法兰弯曲函数的两个具体族的构造。如果 p 为奇数且 n 在 n 趋于无穷大的极限中为奇数,我们的构造改进了有限域 \({\mathbb F}_p\) 上 n 变量弯曲函数数的下界。此外,当 n 趋于无穷大时,我们得到了 n 变量上二维向量马约拉纳-麦克法兰弯曲函数的渐近精确数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic bounds on the numbers of certain bent functions

Using recent results of Keevash et al. [10] and Eberhard et al. [8] together with further new detailed techniques in combinatorics, we present constructions of two concrete families of generalized Maiorana-McFarland bent functions. Our constructions improve the lower bounds on the number of bent functions in n variables over a finite field \({\mathbb F}_p\) if p is odd and n is odd in the limit as n tends to infinity. Moreover we obtain the asymptotically exact number of two dimensional vectorial Maiorana-McFarland bent functions in n variables over \({\mathbb F}_2\) as n tends to infinity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信