{"title":"利用具有变异代理的竞争性蜂群优化器优化非线性混合效应模型的设计","authors":"Elvis Han Cui, Zizhao Zhang, Weng Kee Wong","doi":"10.1007/s11222-024-10468-8","DOIUrl":null,"url":null,"abstract":"<p>Nature-inspired meta-heuristic algorithms are increasingly used in many disciplines to tackle challenging optimization problems. Our focus is to apply a newly proposed nature-inspired meta-heuristics algorithm called CSO-MA to solve challenging design problems in biosciences and demonstrate its flexibility to find various types of optimal approximate or exact designs for nonlinear mixed models with one or several interacting factors and with or without random effects. We show that CSO-MA is efficient and can frequently outperform other algorithms either in terms of speed or accuracy. The algorithm, like other meta-heuristic algorithms, is free of technical assumptions and flexible in that it can incorporate cost structure or multiple user-specified constraints, such as, a fixed number of measurements per subject in a longitudinal study. When possible, we confirm some of the CSO-MA generated designs are optimal with theory by developing theory-based innovative plots. Our applications include searching optimal designs to estimate (i) parameters in mixed nonlinear models with correlated random effects, (ii) a function of parameters for a count model in a dose combination study, and (iii) parameters in a HIV dynamic model. In each case, we show the advantages of using a meta-heuristic approach to solve the optimization problem, and the added benefits of the generated designs.\n</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal designs for nonlinear mixed-effects models using competitive swarm optimizer with mutated agents\",\"authors\":\"Elvis Han Cui, Zizhao Zhang, Weng Kee Wong\",\"doi\":\"10.1007/s11222-024-10468-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nature-inspired meta-heuristic algorithms are increasingly used in many disciplines to tackle challenging optimization problems. Our focus is to apply a newly proposed nature-inspired meta-heuristics algorithm called CSO-MA to solve challenging design problems in biosciences and demonstrate its flexibility to find various types of optimal approximate or exact designs for nonlinear mixed models with one or several interacting factors and with or without random effects. We show that CSO-MA is efficient and can frequently outperform other algorithms either in terms of speed or accuracy. The algorithm, like other meta-heuristic algorithms, is free of technical assumptions and flexible in that it can incorporate cost structure or multiple user-specified constraints, such as, a fixed number of measurements per subject in a longitudinal study. When possible, we confirm some of the CSO-MA generated designs are optimal with theory by developing theory-based innovative plots. Our applications include searching optimal designs to estimate (i) parameters in mixed nonlinear models with correlated random effects, (ii) a function of parameters for a count model in a dose combination study, and (iii) parameters in a HIV dynamic model. In each case, we show the advantages of using a meta-heuristic approach to solve the optimization problem, and the added benefits of the generated designs.\\n</p>\",\"PeriodicalId\":22058,\"journal\":{\"name\":\"Statistics and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11222-024-10468-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10468-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Optimal designs for nonlinear mixed-effects models using competitive swarm optimizer with mutated agents
Nature-inspired meta-heuristic algorithms are increasingly used in many disciplines to tackle challenging optimization problems. Our focus is to apply a newly proposed nature-inspired meta-heuristics algorithm called CSO-MA to solve challenging design problems in biosciences and demonstrate its flexibility to find various types of optimal approximate or exact designs for nonlinear mixed models with one or several interacting factors and with or without random effects. We show that CSO-MA is efficient and can frequently outperform other algorithms either in terms of speed or accuracy. The algorithm, like other meta-heuristic algorithms, is free of technical assumptions and flexible in that it can incorporate cost structure or multiple user-specified constraints, such as, a fixed number of measurements per subject in a longitudinal study. When possible, we confirm some of the CSO-MA generated designs are optimal with theory by developing theory-based innovative plots. Our applications include searching optimal designs to estimate (i) parameters in mixed nonlinear models with correlated random effects, (ii) a function of parameters for a count model in a dose combination study, and (iii) parameters in a HIV dynamic model. In each case, we show the advantages of using a meta-heuristic approach to solve the optimization problem, and the added benefits of the generated designs.
期刊介绍:
Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences.
In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification.
In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.