不存在具有素度域扩展的凯勒映射

Vered Moskowicz
{"title":"不存在具有素度域扩展的凯勒映射","authors":"Vered Moskowicz","doi":"arxiv-2407.13795","DOIUrl":null,"url":null,"abstract":"The two-dimensional Jacobian Conjecture says that a Keller map $f: (x,y)\n\\mapsto (p,q) \\in k[x,y]^2$ having an invertible Jacobian is an automorphism of\n$k[x,y]$. We prove that there is no Keller map with $[k(x,y): k(p,q)]$ prime.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"There are no Keller maps having prime degree field extensions\",\"authors\":\"Vered Moskowicz\",\"doi\":\"arxiv-2407.13795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The two-dimensional Jacobian Conjecture says that a Keller map $f: (x,y)\\n\\\\mapsto (p,q) \\\\in k[x,y]^2$ having an invertible Jacobian is an automorphism of\\n$k[x,y]$. We prove that there is no Keller map with $[k(x,y): k(p,q)]$ prime.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.13795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二维雅各布猜想说,在 k[x,y]^2$ 中具有可逆雅各布的凯勒映射 $f: (x,y)/mapsto (p,q) /是$k[x,y]$的自动变形。我们证明不存在$[k(x,y): k(p,q)]$质数的凯勒映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
There are no Keller maps having prime degree field extensions
The two-dimensional Jacobian Conjecture says that a Keller map $f: (x,y) \mapsto (p,q) \in k[x,y]^2$ having an invertible Jacobian is an automorphism of $k[x,y]$. We prove that there is no Keller map with $[k(x,y): k(p,q)]$ prime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信