{"title":"近似巴拿赫空间广义边沁映射定点的克拉斯诺瑟尔迭代过程及其在变分不等式和分割可行性问题中的应用","authors":"Ravindra K. Bisht","doi":"10.1007/s13226-024-00625-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we establish existence, uniqueness, and convergence results for approximating fixed points using a Krasnosel’skii iterative process for generalized Bianchini mappings in Banach spaces. Additionally, we demonstrate the practical applications of our main fixed point theorems by solving variational inequality problems, split feasibility problems, and certain linear systems of equations.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Krasnosel’skii iterative process for approximating fixed points of generalized Bianchini mappings in Banach space and applications to variational inequality and split feasibility problems\",\"authors\":\"Ravindra K. Bisht\",\"doi\":\"10.1007/s13226-024-00625-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we establish existence, uniqueness, and convergence results for approximating fixed points using a Krasnosel’skii iterative process for generalized Bianchini mappings in Banach spaces. Additionally, we demonstrate the practical applications of our main fixed point theorems by solving variational inequality problems, split feasibility problems, and certain linear systems of equations.</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00625-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00625-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Krasnosel’skii iterative process for approximating fixed points of generalized Bianchini mappings in Banach space and applications to variational inequality and split feasibility problems
In this paper, we establish existence, uniqueness, and convergence results for approximating fixed points using a Krasnosel’skii iterative process for generalized Bianchini mappings in Banach spaces. Additionally, we demonstrate the practical applications of our main fixed point theorems by solving variational inequality problems, split feasibility problems, and certain linear systems of equations.