近似巴拿赫空间广义边沁映射定点的克拉斯诺瑟尔迭代过程及其在变分不等式和分割可行性问题中的应用

Ravindra K. Bisht
{"title":"近似巴拿赫空间广义边沁映射定点的克拉斯诺瑟尔迭代过程及其在变分不等式和分割可行性问题中的应用","authors":"Ravindra K. Bisht","doi":"10.1007/s13226-024-00625-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we establish existence, uniqueness, and convergence results for approximating fixed points using a Krasnosel’skii iterative process for generalized Bianchini mappings in Banach spaces. Additionally, we demonstrate the practical applications of our main fixed point theorems by solving variational inequality problems, split feasibility problems, and certain linear systems of equations.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Krasnosel’skii iterative process for approximating fixed points of generalized Bianchini mappings in Banach space and applications to variational inequality and split feasibility problems\",\"authors\":\"Ravindra K. Bisht\",\"doi\":\"10.1007/s13226-024-00625-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we establish existence, uniqueness, and convergence results for approximating fixed points using a Krasnosel’skii iterative process for generalized Bianchini mappings in Banach spaces. Additionally, we demonstrate the practical applications of our main fixed point theorems by solving variational inequality problems, split feasibility problems, and certain linear systems of equations.</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00625-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00625-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们利用 Krasnosel'skii 迭代过程为巴拿赫空间中的广义边基尼映射建立了近似定点的存在性、唯一性和收敛性结果。此外,我们还通过解决变分不等式问题、分割可行性问题和某些线性方程组,证明了我们主要定点定理的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Krasnosel’skii iterative process for approximating fixed points of generalized Bianchini mappings in Banach space and applications to variational inequality and split feasibility problems

In this paper, we establish existence, uniqueness, and convergence results for approximating fixed points using a Krasnosel’skii iterative process for generalized Bianchini mappings in Banach spaces. Additionally, we demonstrate the practical applications of our main fixed point theorems by solving variational inequality problems, split feasibility problems, and certain linear systems of equations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信