纯周期性续分和图形定向迭代函数系统

Giovanni Panti
{"title":"纯周期性续分和图形定向迭代函数系统","authors":"Giovanni Panti","doi":"10.1007/s11139-024-00904-8","DOIUrl":null,"url":null,"abstract":"<p>We describe Gauss-type maps as geometric realizations of certain codes in the monoid of nonnegative matrices in the extended modular group. Each such code, together with an appropriate choice of unimodular intervals in <span>\\({{\\,\\textrm{P}\\,}}^1\\mathbb {R}\\)</span>, determines a dual pair of graph-directed iterated function systems, whose attractors contain intervals and constitute the domains of a dual pair of Gauss-type maps. Our framework covers many continued fraction algorithms (such as Farey fractions, Ceiling, Even and Odd, Nearest Integer, <span>\\(\\ldots \\)</span>) and provides explicit dual algorithms and characterizations of those quadratic irrationals having a purely periodic expansion.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"08 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Purely periodic continued fractions and graph-directed iterated function systems\",\"authors\":\"Giovanni Panti\",\"doi\":\"10.1007/s11139-024-00904-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We describe Gauss-type maps as geometric realizations of certain codes in the monoid of nonnegative matrices in the extended modular group. Each such code, together with an appropriate choice of unimodular intervals in <span>\\\\({{\\\\,\\\\textrm{P}\\\\,}}^1\\\\mathbb {R}\\\\)</span>, determines a dual pair of graph-directed iterated function systems, whose attractors contain intervals and constitute the domains of a dual pair of Gauss-type maps. Our framework covers many continued fraction algorithms (such as Farey fractions, Ceiling, Even and Odd, Nearest Integer, <span>\\\\(\\\\ldots \\\\)</span>) and provides explicit dual algorithms and characterizations of those quadratic irrationals having a purely periodic expansion.</p>\",\"PeriodicalId\":501430,\"journal\":{\"name\":\"The Ramanujan Journal\",\"volume\":\"08 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ramanujan Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-024-00904-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00904-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将高斯型映射描述为扩展模数群中非负矩阵单元中某些编码的几何实现。每个这样的代码,加上在\({{\,\textrm{P}\,}^1\mathbb {R}\)中对单模区间的适当选择,决定了一对图定向迭代函数系统的对偶,其吸引子包含区间,并构成一对对偶高斯型映射的域。我们的框架涵盖了许多续分算法(如法利分数、天花板、偶数和奇数、最近整数、(\ldots \)),并提供了明确的对偶算法和具有纯周期性扩展的二次无理数的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Purely periodic continued fractions and graph-directed iterated function systems

Purely periodic continued fractions and graph-directed iterated function systems

We describe Gauss-type maps as geometric realizations of certain codes in the monoid of nonnegative matrices in the extended modular group. Each such code, together with an appropriate choice of unimodular intervals in \({{\,\textrm{P}\,}}^1\mathbb {R}\), determines a dual pair of graph-directed iterated function systems, whose attractors contain intervals and constitute the domains of a dual pair of Gauss-type maps. Our framework covers many continued fraction algorithms (such as Farey fractions, Ceiling, Even and Odd, Nearest Integer, \(\ldots \)) and provides explicit dual algorithms and characterizations of those quadratic irrationals having a purely periodic expansion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信