无需扰动技术的非线性马修方程稳定性分析综合研究

Yusry O. El‐Dib
{"title":"无需扰动技术的非线性马修方程稳定性分析综合研究","authors":"Yusry O. El‐Dib","doi":"10.1002/zamm.202400047","DOIUrl":null,"url":null,"abstract":"The present research focuses on the challenges engineers face in predicting the behavior of nonlinear vibration systems accurately. The nonperturbative method is highlighted as a solution that provides insights into chaos, bifurcation, resonance response, and stability attributes. Specifically, the study delves into the dynamic analysis of the nonlinear Mathieu equation. The research involves a complex and extensive analytical exploration, transitioning from a nonlinear state to a linear one through various stages. The introduced computational method aims to examine the resonance response of the nonlinear Mathieu equation and offer innovative solutions for the Mathieu–Duffing–type oscillator. The nonperturbative approach remains essential in gaining a deeper understanding of nonlinear vibration systems.","PeriodicalId":501230,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive study of stability analysis for nonlinear Mathieu equation without a perturbative technique\",\"authors\":\"Yusry O. El‐Dib\",\"doi\":\"10.1002/zamm.202400047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present research focuses on the challenges engineers face in predicting the behavior of nonlinear vibration systems accurately. The nonperturbative method is highlighted as a solution that provides insights into chaos, bifurcation, resonance response, and stability attributes. Specifically, the study delves into the dynamic analysis of the nonlinear Mathieu equation. The research involves a complex and extensive analytical exploration, transitioning from a nonlinear state to a linear one through various stages. The introduced computational method aims to examine the resonance response of the nonlinear Mathieu equation and offer innovative solutions for the Mathieu–Duffing–type oscillator. The nonperturbative approach remains essential in gaining a deeper understanding of nonlinear vibration systems.\",\"PeriodicalId\":501230,\"journal\":{\"name\":\"ZAMM - Journal of Applied Mathematics and Mechanics\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ZAMM - Journal of Applied Mathematics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/zamm.202400047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202400047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是工程师在准确预测非线性振动系统行为时所面临的挑战。非扰动方法作为一种解决方案,能深入揭示混沌、分岔、共振响应和稳定性属性,因此得到了重点关注。具体而言,该研究深入探讨了非线性马修方程的动态分析。研究涉及复杂而广泛的分析探索,通过不同阶段从非线性状态过渡到线性状态。引入的计算方法旨在研究非线性马修方程的共振响应,并为马修-达芬型振荡器提供创新的解决方案。非微扰方法对于深入理解非线性振动系统仍然至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comprehensive study of stability analysis for nonlinear Mathieu equation without a perturbative technique
The present research focuses on the challenges engineers face in predicting the behavior of nonlinear vibration systems accurately. The nonperturbative method is highlighted as a solution that provides insights into chaos, bifurcation, resonance response, and stability attributes. Specifically, the study delves into the dynamic analysis of the nonlinear Mathieu equation. The research involves a complex and extensive analytical exploration, transitioning from a nonlinear state to a linear one through various stages. The introduced computational method aims to examine the resonance response of the nonlinear Mathieu equation and offer innovative solutions for the Mathieu–Duffing–type oscillator. The nonperturbative approach remains essential in gaining a deeper understanding of nonlinear vibration systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信