弦弧域上的德里赫特空间

IF 1.3 2区 数学 Q1 MATHEMATICS
Huaying Wei, Michel Zinsmeister
{"title":"弦弧域上的德里赫特空间","authors":"Huaying Wei, Michel Zinsmeister","doi":"10.1007/s00208-024-02946-1","DOIUrl":null,"url":null,"abstract":"<p>If <i>U</i> is a <span>\\(C^{\\infty }\\)</span> function with compact support in the plane, we let <i>u</i> be its restriction to the unit circle <span>\\({\\mathbb {S}}\\)</span>, and denote by <span>\\(U_i,\\,U_e\\)</span> the harmonic extensions of <i>u</i> respectively in the interior and the exterior of <span>\\({\\mathbb {S}}\\)</span> on the Riemann sphere. About a hundred years ago, Douglas [9] has shown that </p><span>$$\\begin{aligned} \\iint _{{\\mathbb {D}}}|\\nabla U_i|^2(z)dxdy&amp;= \\iint _{\\bar{{\\mathbb {C}}}\\backslash \\bar{{\\mathbb {D}}}}|\\nabla U_e|^2(z)dxdy\\\\&amp;= \\frac{1}{2\\pi }\\iint _{{\\mathbb {S}}\\times {\\mathbb {S}}} \\left| \\frac{u(z_1)-u(z_2)}{z_1-z_2}\\right| ^2|dz_1||dz_2|, \\end{aligned}$$</span><p>thus giving three ways to express the Dirichlet norm of <i>u</i>. On a rectifiable Jordan curve <span>\\(\\Gamma \\)</span> we have obvious analogues of these three expressions, which will of course not be equal in general. The main goal of this paper is to show that these 3 (semi-)norms are equivalent if and only if <span>\\(\\Gamma \\)</span> is a chord-arc curve.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"10 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dirichlet spaces over chord-arc domains\",\"authors\":\"Huaying Wei, Michel Zinsmeister\",\"doi\":\"10.1007/s00208-024-02946-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>If <i>U</i> is a <span>\\\\(C^{\\\\infty }\\\\)</span> function with compact support in the plane, we let <i>u</i> be its restriction to the unit circle <span>\\\\({\\\\mathbb {S}}\\\\)</span>, and denote by <span>\\\\(U_i,\\\\,U_e\\\\)</span> the harmonic extensions of <i>u</i> respectively in the interior and the exterior of <span>\\\\({\\\\mathbb {S}}\\\\)</span> on the Riemann sphere. About a hundred years ago, Douglas [9] has shown that </p><span>$$\\\\begin{aligned} \\\\iint _{{\\\\mathbb {D}}}|\\\\nabla U_i|^2(z)dxdy&amp;= \\\\iint _{\\\\bar{{\\\\mathbb {C}}}\\\\backslash \\\\bar{{\\\\mathbb {D}}}}|\\\\nabla U_e|^2(z)dxdy\\\\\\\\&amp;= \\\\frac{1}{2\\\\pi }\\\\iint _{{\\\\mathbb {S}}\\\\times {\\\\mathbb {S}}} \\\\left| \\\\frac{u(z_1)-u(z_2)}{z_1-z_2}\\\\right| ^2|dz_1||dz_2|, \\\\end{aligned}$$</span><p>thus giving three ways to express the Dirichlet norm of <i>u</i>. On a rectifiable Jordan curve <span>\\\\(\\\\Gamma \\\\)</span> we have obvious analogues of these three expressions, which will of course not be equal in general. The main goal of this paper is to show that these 3 (semi-)norms are equivalent if and only if <span>\\\\(\\\\Gamma \\\\)</span> is a chord-arc curve.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02946-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02946-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果 U 是一个在平面上有紧凑支持的 (C^{\infty }\ )函数,我们就让 u 成为它在单位圆 ({\mathbb {S}}\)上的限制,并用 \(U_i,\,U_e\) 表示 u 在黎曼球上分别在 ({\mathbb {S}}\)内部和外部的谐波扩展。大约一百年前,道格拉斯[9]证明了 $$\begin{aligned}\iint _{{\mathbb {D}}|\nabla U_i|^2(z)dxdy&= \iint _{{bar\{{\mathbb {C}}}\backslash \bar{{\mathbb {D}}}}|\nabla U_e|^2(z)dxdy\&= \frac{1}{2\pi }\iint _{{\mathbb {S}}\times {\mathbb {S}}}\left| \frac{u(z_1)-u(z_2)}{z_1-z_2}\right| ^2|dz_1||dz_2|, \end{aligned}$$ 因此给出了三种表达 u 的 Dirichlet norm 的方法。本文的主要目的是证明,当且仅当\(\Gamma \)是弦弧曲线时,这三种(半)规范是等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dirichlet spaces over chord-arc domains

Dirichlet spaces over chord-arc domains

If U is a \(C^{\infty }\) function with compact support in the plane, we let u be its restriction to the unit circle \({\mathbb {S}}\), and denote by \(U_i,\,U_e\) the harmonic extensions of u respectively in the interior and the exterior of \({\mathbb {S}}\) on the Riemann sphere. About a hundred years ago, Douglas [9] has shown that

$$\begin{aligned} \iint _{{\mathbb {D}}}|\nabla U_i|^2(z)dxdy&= \iint _{\bar{{\mathbb {C}}}\backslash \bar{{\mathbb {D}}}}|\nabla U_e|^2(z)dxdy\\&= \frac{1}{2\pi }\iint _{{\mathbb {S}}\times {\mathbb {S}}} \left| \frac{u(z_1)-u(z_2)}{z_1-z_2}\right| ^2|dz_1||dz_2|, \end{aligned}$$

thus giving three ways to express the Dirichlet norm of u. On a rectifiable Jordan curve \(\Gamma \) we have obvious analogues of these three expressions, which will of course not be equal in general. The main goal of this paper is to show that these 3 (semi-)norms are equivalent if and only if \(\Gamma \) is a chord-arc curve.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信