{"title":"弦弧域上的德里赫特空间","authors":"Huaying Wei, Michel Zinsmeister","doi":"10.1007/s00208-024-02946-1","DOIUrl":null,"url":null,"abstract":"<p>If <i>U</i> is a <span>\\(C^{\\infty }\\)</span> function with compact support in the plane, we let <i>u</i> be its restriction to the unit circle <span>\\({\\mathbb {S}}\\)</span>, and denote by <span>\\(U_i,\\,U_e\\)</span> the harmonic extensions of <i>u</i> respectively in the interior and the exterior of <span>\\({\\mathbb {S}}\\)</span> on the Riemann sphere. About a hundred years ago, Douglas [9] has shown that </p><span>$$\\begin{aligned} \\iint _{{\\mathbb {D}}}|\\nabla U_i|^2(z)dxdy&= \\iint _{\\bar{{\\mathbb {C}}}\\backslash \\bar{{\\mathbb {D}}}}|\\nabla U_e|^2(z)dxdy\\\\&= \\frac{1}{2\\pi }\\iint _{{\\mathbb {S}}\\times {\\mathbb {S}}} \\left| \\frac{u(z_1)-u(z_2)}{z_1-z_2}\\right| ^2|dz_1||dz_2|, \\end{aligned}$$</span><p>thus giving three ways to express the Dirichlet norm of <i>u</i>. On a rectifiable Jordan curve <span>\\(\\Gamma \\)</span> we have obvious analogues of these three expressions, which will of course not be equal in general. The main goal of this paper is to show that these 3 (semi-)norms are equivalent if and only if <span>\\(\\Gamma \\)</span> is a chord-arc curve.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"10 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dirichlet spaces over chord-arc domains\",\"authors\":\"Huaying Wei, Michel Zinsmeister\",\"doi\":\"10.1007/s00208-024-02946-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>If <i>U</i> is a <span>\\\\(C^{\\\\infty }\\\\)</span> function with compact support in the plane, we let <i>u</i> be its restriction to the unit circle <span>\\\\({\\\\mathbb {S}}\\\\)</span>, and denote by <span>\\\\(U_i,\\\\,U_e\\\\)</span> the harmonic extensions of <i>u</i> respectively in the interior and the exterior of <span>\\\\({\\\\mathbb {S}}\\\\)</span> on the Riemann sphere. About a hundred years ago, Douglas [9] has shown that </p><span>$$\\\\begin{aligned} \\\\iint _{{\\\\mathbb {D}}}|\\\\nabla U_i|^2(z)dxdy&= \\\\iint _{\\\\bar{{\\\\mathbb {C}}}\\\\backslash \\\\bar{{\\\\mathbb {D}}}}|\\\\nabla U_e|^2(z)dxdy\\\\\\\\&= \\\\frac{1}{2\\\\pi }\\\\iint _{{\\\\mathbb {S}}\\\\times {\\\\mathbb {S}}} \\\\left| \\\\frac{u(z_1)-u(z_2)}{z_1-z_2}\\\\right| ^2|dz_1||dz_2|, \\\\end{aligned}$$</span><p>thus giving three ways to express the Dirichlet norm of <i>u</i>. On a rectifiable Jordan curve <span>\\\\(\\\\Gamma \\\\)</span> we have obvious analogues of these three expressions, which will of course not be equal in general. The main goal of this paper is to show that these 3 (semi-)norms are equivalent if and only if <span>\\\\(\\\\Gamma \\\\)</span> is a chord-arc curve.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02946-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02946-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
If U is a \(C^{\infty }\) function with compact support in the plane, we let u be its restriction to the unit circle \({\mathbb {S}}\), and denote by \(U_i,\,U_e\) the harmonic extensions of u respectively in the interior and the exterior of \({\mathbb {S}}\) on the Riemann sphere. About a hundred years ago, Douglas [9] has shown that
thus giving three ways to express the Dirichlet norm of u. On a rectifiable Jordan curve \(\Gamma \) we have obvious analogues of these three expressions, which will of course not be equal in general. The main goal of this paper is to show that these 3 (semi-)norms are equivalent if and only if \(\Gamma \) is a chord-arc curve.
期刊介绍:
Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin.
The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin.
Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.