基于信任区域型法线图的非平滑非凸复合优化半平滑牛顿法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Wenqing Ouyang, Andre Milzarek
{"title":"基于信任区域型法线图的非平滑非凸复合优化半平滑牛顿法","authors":"Wenqing Ouyang, Andre Milzarek","doi":"10.1007/s10107-024-02110-2","DOIUrl":null,"url":null,"abstract":"<p>We propose a novel trust region method for solving a class of nonsmooth, nonconvex composite-type optimization problems. The approach embeds inexact semismooth Newton steps for finding zeros of a normal map-based stationarity measure for the problem in a trust region framework. Based on a new merit function and acceptance mechanism, global convergence and transition to fast local q-superlinear convergence are established under standard conditions. In addition, we verify that the proposed trust region globalization is compatible with the Kurdyka–Łojasiewicz inequality yielding finer convergence results. Experiments on sparse logistic regression, image compression, and a constrained log-determinant problem illustrate the efficiency of the proposed algorithm.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A trust region-type normal map-based semismooth Newton method for nonsmooth nonconvex composite optimization\",\"authors\":\"Wenqing Ouyang, Andre Milzarek\",\"doi\":\"10.1007/s10107-024-02110-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a novel trust region method for solving a class of nonsmooth, nonconvex composite-type optimization problems. The approach embeds inexact semismooth Newton steps for finding zeros of a normal map-based stationarity measure for the problem in a trust region framework. Based on a new merit function and acceptance mechanism, global convergence and transition to fast local q-superlinear convergence are established under standard conditions. In addition, we verify that the proposed trust region globalization is compatible with the Kurdyka–Łojasiewicz inequality yielding finer convergence results. Experiments on sparse logistic regression, image compression, and a constrained log-determinant problem illustrate the efficiency of the proposed algorithm.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-024-02110-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02110-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新颖的信任区域方法,用于解决一类非光滑、非凸的复合型优化问题。该方法在信任区域框架中嵌入了不精确的半光滑牛顿步骤,用于为问题寻找基于正态图的静止度量的零点。基于新的优点函数和接受机制,在标准条件下建立了全局收敛和向快速局部 q 超线性收敛的过渡。此外,我们还验证了所提出的信任区域全局化与 Kurdyka-Łojasiewicz 不等式兼容,从而获得了更精细的收敛结果。稀疏对数回归、图像压缩和受约束对数确定性问题的实验说明了所提算法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A trust region-type normal map-based semismooth Newton method for nonsmooth nonconvex composite optimization

A trust region-type normal map-based semismooth Newton method for nonsmooth nonconvex composite optimization

We propose a novel trust region method for solving a class of nonsmooth, nonconvex composite-type optimization problems. The approach embeds inexact semismooth Newton steps for finding zeros of a normal map-based stationarity measure for the problem in a trust region framework. Based on a new merit function and acceptance mechanism, global convergence and transition to fast local q-superlinear convergence are established under standard conditions. In addition, we verify that the proposed trust region globalization is compatible with the Kurdyka–Łojasiewicz inequality yielding finer convergence results. Experiments on sparse logistic regression, image compression, and a constrained log-determinant problem illustrate the efficiency of the proposed algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信