改良高斯-魏尔斯特拉斯奇异积分在加权空间中的逼近特性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Abhay Pratap Singh, Uaday Singh
{"title":"改良高斯-魏尔斯特拉斯奇异积分在加权空间中的逼近特性","authors":"Abhay Pratap Singh, Uaday Singh","doi":"10.1186/s13660-024-03171-9","DOIUrl":null,"url":null,"abstract":"Singular integral operators play an important role in approximation theory and harmonic analysis. In this paper, we consider a weighted Lebesgue space $L^{p,w}$ , define a modified Gauss–Weierstrass singular integral on it, and study direct and inverse approximation properties of the operator followed by a Korovkin-type approximation theorem for a function $f\\in L^{p,w}$ . We use the modulus of continuity of the functions to measure the rate of convergence.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation properties of a modified Gauss–Weierstrass singular integral in a weighted space\",\"authors\":\"Abhay Pratap Singh, Uaday Singh\",\"doi\":\"10.1186/s13660-024-03171-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Singular integral operators play an important role in approximation theory and harmonic analysis. In this paper, we consider a weighted Lebesgue space $L^{p,w}$ , define a modified Gauss–Weierstrass singular integral on it, and study direct and inverse approximation properties of the operator followed by a Korovkin-type approximation theorem for a function $f\\\\in L^{p,w}$ . We use the modulus of continuity of the functions to measure the rate of convergence.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13660-024-03171-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03171-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

奇异积分算子在近似理论和谐波分析中发挥着重要作用。在本文中,我们考虑了一个加权的 Lebesgue 空间 $L^{p,w}$,在其上定义了一个修正的高斯-韦尔斯特拉斯奇异积分,并研究了该算子的直接和反向逼近性质,随后针对函数 $f\in L^{p,w}$ 提出了一个 Korovkin 型逼近定理。我们使用函数的连续性模量来衡量收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation properties of a modified Gauss–Weierstrass singular integral in a weighted space
Singular integral operators play an important role in approximation theory and harmonic analysis. In this paper, we consider a weighted Lebesgue space $L^{p,w}$ , define a modified Gauss–Weierstrass singular integral on it, and study direct and inverse approximation properties of the operator followed by a Korovkin-type approximation theorem for a function $f\in L^{p,w}$ . We use the modulus of continuity of the functions to measure the rate of convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信