结合定点理论和微分理论

Zeinab Galal, Jean-Simon Pacaud Lemay
{"title":"结合定点理论和微分理论","authors":"Zeinab Galal, Jean-Simon Pacaud Lemay","doi":"arxiv-2407.12691","DOIUrl":null,"url":null,"abstract":"Interactions between derivatives and fixpoints have many important\napplications in both computer science and mathematics. In this paper, we\nprovide a categorical framework to combine fixpoints with derivatives by\nstudying Cartesian differential categories with a fixpoint operator. We\nintroduce an additional axiom relating the derivative of a fixpoint with the\nfixpoint of the derivative. We show how the standard examples of Cartesian\ndifferential categories where we can compute fixpoints provide canonical models\nof this notion. We also consider when the fixpoint operator is a Conway\noperator, or when the underlying category is closed. As an application, we show\nhow this framework is a suitable setting to formalize the Newton-Raphson\noptimization for fast approximation of fixpoints and extend it to higher order\nlanguages.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining fixpoint and differentiation theory\",\"authors\":\"Zeinab Galal, Jean-Simon Pacaud Lemay\",\"doi\":\"arxiv-2407.12691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interactions between derivatives and fixpoints have many important\\napplications in both computer science and mathematics. In this paper, we\\nprovide a categorical framework to combine fixpoints with derivatives by\\nstudying Cartesian differential categories with a fixpoint operator. We\\nintroduce an additional axiom relating the derivative of a fixpoint with the\\nfixpoint of the derivative. We show how the standard examples of Cartesian\\ndifferential categories where we can compute fixpoints provide canonical models\\nof this notion. We also consider when the fixpoint operator is a Conway\\noperator, or when the underlying category is closed. As an application, we show\\nhow this framework is a suitable setting to formalize the Newton-Raphson\\noptimization for fast approximation of fixpoints and extend it to higher order\\nlanguages.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.12691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.12691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

导数与定点之间的相互作用在计算机科学和数学领域都有许多重要应用。在本文中,我们通过研究带有定点算子的笛卡尔微分范畴,为定点与导数的结合提供了一个分类框架。我们引入了一个关于定点导数与导数的定点的附加公理。我们展示了可以计算定点的笛卡尔微分范畴的标准范例是如何提供这一概念的典型模型的。我们还考虑了当定点算子是康威算子时,或者当底层范畴是封闭的时。作为应用,我们展示了这一框架是如何为快速逼近定点而形式化牛顿-拉夫逊优化并将其扩展到高阶语言的合适环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining fixpoint and differentiation theory
Interactions between derivatives and fixpoints have many important applications in both computer science and mathematics. In this paper, we provide a categorical framework to combine fixpoints with derivatives by studying Cartesian differential categories with a fixpoint operator. We introduce an additional axiom relating the derivative of a fixpoint with the fixpoint of the derivative. We show how the standard examples of Cartesian differential categories where we can compute fixpoints provide canonical models of this notion. We also consider when the fixpoint operator is a Conway operator, or when the underlying category is closed. As an application, we show how this framework is a suitable setting to formalize the Newton-Raphson optimization for fast approximation of fixpoints and extend it to higher order languages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信