{"title":"半线性时间分数扩散方程的高效计算技术","authors":"Aniruddha Seal, Srinivasan Natesan","doi":"10.1007/s10092-024-00604-1","DOIUrl":null,"url":null,"abstract":"<p>In this manuscript, we aim to study the semi-analytical and the numerical solution of a semilinear time-fractional diffusion equation where the time-fractional term includes the combination of tempered fractional derivative and <i>k</i>-Caputo fractional derivative with a parameter <span>\\(k \\ge 1\\)</span>. The application of the new integral transform, namely Elzaki transform of the tempered <i>k</i>-Caputo fractional derivative is shown here and thereafter the semi-analytical solution is obtained by using the Elzaki decomposition method. The model problem is linearized using Newton’s quasilinearization method, and then the quasilinearized problem is discretized by the difference scheme namely tempered <span>\\(_kL2\\)</span>-<span>\\(1_\\sigma \\)</span> method. Stability and convergence analysis of the proposed scheme have been discussed in the <span>\\(L_2\\)</span>-norm using the energy method. In support of the theoretical results, numerical example has been incorporated.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient computational technique for semilinear time-fractional diffusion equation\",\"authors\":\"Aniruddha Seal, Srinivasan Natesan\",\"doi\":\"10.1007/s10092-024-00604-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this manuscript, we aim to study the semi-analytical and the numerical solution of a semilinear time-fractional diffusion equation where the time-fractional term includes the combination of tempered fractional derivative and <i>k</i>-Caputo fractional derivative with a parameter <span>\\\\(k \\\\ge 1\\\\)</span>. The application of the new integral transform, namely Elzaki transform of the tempered <i>k</i>-Caputo fractional derivative is shown here and thereafter the semi-analytical solution is obtained by using the Elzaki decomposition method. The model problem is linearized using Newton’s quasilinearization method, and then the quasilinearized problem is discretized by the difference scheme namely tempered <span>\\\\(_kL2\\\\)</span>-<span>\\\\(1_\\\\sigma \\\\)</span> method. Stability and convergence analysis of the proposed scheme have been discussed in the <span>\\\\(L_2\\\\)</span>-norm using the energy method. In support of the theoretical results, numerical example has been incorporated.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10092-024-00604-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-024-00604-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An efficient computational technique for semilinear time-fractional diffusion equation
In this manuscript, we aim to study the semi-analytical and the numerical solution of a semilinear time-fractional diffusion equation where the time-fractional term includes the combination of tempered fractional derivative and k-Caputo fractional derivative with a parameter \(k \ge 1\). The application of the new integral transform, namely Elzaki transform of the tempered k-Caputo fractional derivative is shown here and thereafter the semi-analytical solution is obtained by using the Elzaki decomposition method. The model problem is linearized using Newton’s quasilinearization method, and then the quasilinearized problem is discretized by the difference scheme namely tempered \(_kL2\)-\(1_\sigma \) method. Stability and convergence analysis of the proposed scheme have been discussed in the \(L_2\)-norm using the energy method. In support of the theoretical results, numerical example has been incorporated.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.