{"title":"非交换勒贝格空间中的一般K封闭性结果及其在非交换马丁格哈代空间实插值中的应用","authors":"Hugues Moyart","doi":"arxiv-2407.12335","DOIUrl":null,"url":null,"abstract":"In this paper, we establish a new general $K$-closedness result in the\ncontext of real interpolation of noncommutative Lebesgue spaces involving\nfiltrations. As an application, we derive $K$-closedness results for various\nclasses of noncommutative martingale Hardy spaces, addressing a problem raised\nby Randrianantoanina. The proof of this general result adapts Bourgain's\napproach to the real interpolation of classical Hardy spaces on the disk within\nthe framework of noncommutative martingales.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"General K-closedness results in noncommutative Lebesgue spaces and applications to the real interpolation of noncommutative martingale Hardy spaces\",\"authors\":\"Hugues Moyart\",\"doi\":\"arxiv-2407.12335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we establish a new general $K$-closedness result in the\\ncontext of real interpolation of noncommutative Lebesgue spaces involving\\nfiltrations. As an application, we derive $K$-closedness results for various\\nclasses of noncommutative martingale Hardy spaces, addressing a problem raised\\nby Randrianantoanina. The proof of this general result adapts Bourgain's\\napproach to the real interpolation of classical Hardy spaces on the disk within\\nthe framework of noncommutative martingales.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.12335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.12335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
General K-closedness results in noncommutative Lebesgue spaces and applications to the real interpolation of noncommutative martingale Hardy spaces
In this paper, we establish a new general $K$-closedness result in the
context of real interpolation of noncommutative Lebesgue spaces involving
filtrations. As an application, we derive $K$-closedness results for various
classes of noncommutative martingale Hardy spaces, addressing a problem raised
by Randrianantoanina. The proof of this general result adapts Bourgain's
approach to the real interpolation of classical Hardy spaces on the disk within
the framework of noncommutative martingales.