{"title":"大维协方差矩阵的非线性收缩测试","authors":"Taras Bodnar, Nestor Parolya, Frederik Veldman","doi":"10.1111/stan.12348","DOIUrl":null,"url":null,"abstract":"This paper is concerned with deriving a new test on a covariance matrix which is based on its nonlinear shrinkage estimator. The distribution of the test statistic is deduced under the null hypothesis in the large‐dimensional setting, that is, when with variables and samples both tending to infinity. The theoretical results are illustrated by means of an extensive simulation study where the new nonlinear shrinkage‐based test is compared with existing approaches, in particular with the commonly used corrected likelihood ratio test, the corrected John test, and the test based on the linear shrinkage approach. It is demonstrated that the new nonlinear shrinkage test possesses better power properties under heteroscedastic alternative.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"45 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear shrinkage test on a large‐dimensional covariance matrix\",\"authors\":\"Taras Bodnar, Nestor Parolya, Frederik Veldman\",\"doi\":\"10.1111/stan.12348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with deriving a new test on a covariance matrix which is based on its nonlinear shrinkage estimator. The distribution of the test statistic is deduced under the null hypothesis in the large‐dimensional setting, that is, when with variables and samples both tending to infinity. The theoretical results are illustrated by means of an extensive simulation study where the new nonlinear shrinkage‐based test is compared with existing approaches, in particular with the commonly used corrected likelihood ratio test, the corrected John test, and the test based on the linear shrinkage approach. It is demonstrated that the new nonlinear shrinkage test possesses better power properties under heteroscedastic alternative.\",\"PeriodicalId\":51178,\"journal\":{\"name\":\"Statistica Neerlandica\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Neerlandica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12348\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12348","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Nonlinear shrinkage test on a large‐dimensional covariance matrix
This paper is concerned with deriving a new test on a covariance matrix which is based on its nonlinear shrinkage estimator. The distribution of the test statistic is deduced under the null hypothesis in the large‐dimensional setting, that is, when with variables and samples both tending to infinity. The theoretical results are illustrated by means of an extensive simulation study where the new nonlinear shrinkage‐based test is compared with existing approaches, in particular with the commonly used corrected likelihood ratio test, the corrected John test, and the test based on the linear shrinkage approach. It is demonstrated that the new nonlinear shrinkage test possesses better power properties under heteroscedastic alternative.
期刊介绍:
Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.