Robert Haigh, Malindu Sandanayake, Paul Joseph, Ehsan Yaghoubi, Zora Vrcelj
{"title":"废纺织品和纸板材料在混凝土中的力学性能和微结构性能","authors":"Robert Haigh, Malindu Sandanayake, Paul Joseph, Ehsan Yaghoubi, Zora Vrcelj","doi":"10.1002/suco.202301148","DOIUrl":null,"url":null,"abstract":"Waste fiber reinforced concrete is gaining recognition as a high‐performance construction material, offering notable load‐bearing capacity, corrosion resistance, and enhanced durability features. As the building and construction industry focuses on sustainable practices, fibers derived from waste materials create an opportunity to be utilized further in composite designs. This study explores the tensile, compressive, and flexural behaviors of cardboard fibers (kraft fibers) and textile polyester fibers in concrete materials. The composite microstructure is also investigated using a scanning electron microscope (SEM) to measure the bonding performance of the fibers within the cementitious matrix. Four mix designs were created using 2.5% textile fibers as a reinforcement agent and 5% silica fume modified kraft fibers (SFKFs) as a partial cement replacement. The combination of fibers achieved 44 MPa compressive strength, equaling the control. Tensile strength was enhanced by 5% when using the combination of the two fibers, achieving 3.58 MPa in comparison to 3.41 MPa. However, flexural strength was reduced among all fibrous concrete materials. SEM images distinguished the natural and synthetic characteristics associated with the two fibers within the cementitious matrix. Namely, demonstrating the chemical bonding of SFKFs in comparison with the physical bonding properties of the textile fibers. This study serves as a valuable resource for future investigations and the broader adoption of binary waste fiber composite designs in cementitious composite applications.","PeriodicalId":21988,"journal":{"name":"Structural Concrete","volume":"36 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mechanical and microstructural performance of waste textile and cardboard materials in concrete\",\"authors\":\"Robert Haigh, Malindu Sandanayake, Paul Joseph, Ehsan Yaghoubi, Zora Vrcelj\",\"doi\":\"10.1002/suco.202301148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Waste fiber reinforced concrete is gaining recognition as a high‐performance construction material, offering notable load‐bearing capacity, corrosion resistance, and enhanced durability features. As the building and construction industry focuses on sustainable practices, fibers derived from waste materials create an opportunity to be utilized further in composite designs. This study explores the tensile, compressive, and flexural behaviors of cardboard fibers (kraft fibers) and textile polyester fibers in concrete materials. The composite microstructure is also investigated using a scanning electron microscope (SEM) to measure the bonding performance of the fibers within the cementitious matrix. Four mix designs were created using 2.5% textile fibers as a reinforcement agent and 5% silica fume modified kraft fibers (SFKFs) as a partial cement replacement. The combination of fibers achieved 44 MPa compressive strength, equaling the control. Tensile strength was enhanced by 5% when using the combination of the two fibers, achieving 3.58 MPa in comparison to 3.41 MPa. However, flexural strength was reduced among all fibrous concrete materials. SEM images distinguished the natural and synthetic characteristics associated with the two fibers within the cementitious matrix. Namely, demonstrating the chemical bonding of SFKFs in comparison with the physical bonding properties of the textile fibers. This study serves as a valuable resource for future investigations and the broader adoption of binary waste fiber composite designs in cementitious composite applications.\",\"PeriodicalId\":21988,\"journal\":{\"name\":\"Structural Concrete\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Concrete\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/suco.202301148\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Concrete","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/suco.202301148","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
The mechanical and microstructural performance of waste textile and cardboard materials in concrete
Waste fiber reinforced concrete is gaining recognition as a high‐performance construction material, offering notable load‐bearing capacity, corrosion resistance, and enhanced durability features. As the building and construction industry focuses on sustainable practices, fibers derived from waste materials create an opportunity to be utilized further in composite designs. This study explores the tensile, compressive, and flexural behaviors of cardboard fibers (kraft fibers) and textile polyester fibers in concrete materials. The composite microstructure is also investigated using a scanning electron microscope (SEM) to measure the bonding performance of the fibers within the cementitious matrix. Four mix designs were created using 2.5% textile fibers as a reinforcement agent and 5% silica fume modified kraft fibers (SFKFs) as a partial cement replacement. The combination of fibers achieved 44 MPa compressive strength, equaling the control. Tensile strength was enhanced by 5% when using the combination of the two fibers, achieving 3.58 MPa in comparison to 3.41 MPa. However, flexural strength was reduced among all fibrous concrete materials. SEM images distinguished the natural and synthetic characteristics associated with the two fibers within the cementitious matrix. Namely, demonstrating the chemical bonding of SFKFs in comparison with the physical bonding properties of the textile fibers. This study serves as a valuable resource for future investigations and the broader adoption of binary waste fiber composite designs in cementitious composite applications.
期刊介绍:
Structural Concrete, the official journal of the fib, provides conceptual and procedural guidance in the field of concrete construction, and features peer-reviewed papers, keynote research and industry news covering all aspects of the design, construction, performance in service and demolition of concrete structures.
Main topics:
design, construction, performance in service, conservation (assessment, maintenance, strengthening) and demolition of concrete structures
research about the behaviour of concrete structures
development of design methods
fib Model Code
sustainability of concrete structures.