非自主迭代函数系统的熵

IF 1.1 3区 数学 Q1 MATHEMATICS
Yujun Ju, Huoxia Liu, Qigui Yang
{"title":"非自主迭代函数系统的熵","authors":"Yujun Ju, Huoxia Liu, Qigui Yang","doi":"10.1007/s00025-024-02233-0","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to investigate the topological entropy for non-autonomous iterated function systems (NAIFSs) introduced by Ghane and Sarkooh. An inequality formula for two topological entropies with a factor map of NAIFSs is established. We extend the topological analogue of the Abramov–Rokhlin formula for the entropy of a skew product transformation. Finally, the partial variational principle is obtained about the measure-theoretic entropy and topological entropy for NAIFSs.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy of Non-autonomous Iterated Function Systems\",\"authors\":\"Yujun Ju, Huoxia Liu, Qigui Yang\",\"doi\":\"10.1007/s00025-024-02233-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this paper is to investigate the topological entropy for non-autonomous iterated function systems (NAIFSs) introduced by Ghane and Sarkooh. An inequality formula for two topological entropies with a factor map of NAIFSs is established. We extend the topological analogue of the Abramov–Rokhlin formula for the entropy of a skew product transformation. Finally, the partial variational principle is obtained about the measure-theoretic entropy and topological entropy for NAIFSs.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02233-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02233-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在研究 Ghane 和 Sarkooh 提出的非自治迭代函数系统(NAIFS)的拓扑熵。本文建立了带有 NAIFS 因子映射的两个拓扑熵的不等式。我们对阿布拉莫夫-罗克林公式的拓扑类比进行了扩展,以求得斜积变换的熵。最后,我们得到了关于 NAIFS 的度量理论熵和拓扑熵的部分变分原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy of Non-autonomous Iterated Function Systems

The aim of this paper is to investigate the topological entropy for non-autonomous iterated function systems (NAIFSs) introduced by Ghane and Sarkooh. An inequality formula for two topological entropies with a factor map of NAIFSs is established. We extend the topological analogue of the Abramov–Rokhlin formula for the entropy of a skew product transformation. Finally, the partial variational principle is obtained about the measure-theoretic entropy and topological entropy for NAIFSs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信