有理矩阵特征值模数的界限

IF 1.1 3区 数学 Q1 MATHEMATICS
Pallavi Basavaraju, Shrinath Hadimani, Sachindranath Jayaraman
{"title":"有理矩阵特征值模数的界限","authors":"Pallavi Basavaraju, Shrinath Hadimani, Sachindranath Jayaraman","doi":"10.1007/s00025-024-02238-9","DOIUrl":null,"url":null,"abstract":"<p>A rational matrix is a matrix-valued function <span>\\(R(\\lambda ): {\\mathbb {C}} \\rightarrow M_p\\)</span> such that <span>\\(R(\\lambda ) = \\begin{bmatrix} r_{ij}(\\lambda ) \\end{bmatrix} _{p\\times p}\\)</span>, where <span>\\(r_{ij}(\\lambda )\\)</span> are scalar complex rational functions in <span>\\(\\lambda \\)</span> for <span>\\(i,j=1,2,\\ldots ,p\\)</span>. The aim of this paper is to obtain bounds on the moduli of eigenvalues of rational matrices in terms of the moduli of their poles. To a given rational matrix <span>\\(R(\\lambda )\\)</span> we associate a block matrix <span>\\({\\mathcal {C}}_R\\)</span> whose blocks consist of the coefficient matrices of <span>\\(R(\\lambda )\\)</span>, as well as a scalar real rational function <i>q</i>(<i>x</i>) whose coefficients consist of the norm of the coefficient matrices of <span>\\(R(\\lambda )\\)</span>. We prove that a zero of <i>q</i>(<i>x</i>) which is greater than the moduli of all the poles of <span>\\(R(\\lambda )\\)</span> will be an upper bound on the moduli of eigenvalues of <span>\\(R(\\lambda )\\)</span>. Moreover, by using a block matrix associated with <i>q</i>(<i>x</i>), we establish bounds on the zeros of <i>q</i>(<i>x</i>), which in turn yields bounds on the moduli of eigenvalues of <span>\\(R(\\lambda )\\)</span>.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds on the Moduli of Eigenvalues of Rational Matrices\",\"authors\":\"Pallavi Basavaraju, Shrinath Hadimani, Sachindranath Jayaraman\",\"doi\":\"10.1007/s00025-024-02238-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A rational matrix is a matrix-valued function <span>\\\\(R(\\\\lambda ): {\\\\mathbb {C}} \\\\rightarrow M_p\\\\)</span> such that <span>\\\\(R(\\\\lambda ) = \\\\begin{bmatrix} r_{ij}(\\\\lambda ) \\\\end{bmatrix} _{p\\\\times p}\\\\)</span>, where <span>\\\\(r_{ij}(\\\\lambda )\\\\)</span> are scalar complex rational functions in <span>\\\\(\\\\lambda \\\\)</span> for <span>\\\\(i,j=1,2,\\\\ldots ,p\\\\)</span>. The aim of this paper is to obtain bounds on the moduli of eigenvalues of rational matrices in terms of the moduli of their poles. To a given rational matrix <span>\\\\(R(\\\\lambda )\\\\)</span> we associate a block matrix <span>\\\\({\\\\mathcal {C}}_R\\\\)</span> whose blocks consist of the coefficient matrices of <span>\\\\(R(\\\\lambda )\\\\)</span>, as well as a scalar real rational function <i>q</i>(<i>x</i>) whose coefficients consist of the norm of the coefficient matrices of <span>\\\\(R(\\\\lambda )\\\\)</span>. We prove that a zero of <i>q</i>(<i>x</i>) which is greater than the moduli of all the poles of <span>\\\\(R(\\\\lambda )\\\\)</span> will be an upper bound on the moduli of eigenvalues of <span>\\\\(R(\\\\lambda )\\\\)</span>. Moreover, by using a block matrix associated with <i>q</i>(<i>x</i>), we establish bounds on the zeros of <i>q</i>(<i>x</i>), which in turn yields bounds on the moduli of eigenvalues of <span>\\\\(R(\\\\lambda )\\\\)</span>.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02238-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02238-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

有理矩阵是一个矩阵值函数(R(\lambda ):{mathbb {C}}\这样 R(R(\lambda ) = \begin{bmatrix} r_{ij}(\lambda ) \end{bmatrix})其中,\(r_{ij}(\lambda )\)都是\(i,j=1,2,\ldots ,p\)在\(\lambda\)中的标量复有理函数。本文的目的是根据有理矩阵的极值模数来获得有理矩阵特征值模数的边界。对于给定的有理矩阵\(R(\lambda )\),我们会关联一个分块矩阵\({mathcal {C}}_R\),其分块由\(R(\lambda )\)的系数矩阵组成,以及一个标量实有理函数q(x),其系数由\(R(\lambda )\)的系数矩阵的规范组成。我们证明,q(x)的零点大于\(R(\lambda)\)的所有极点的模数将是\(R(\lambda)\)的特征值模数的上界。此外,通过使用与q(x)相关的分块矩阵,我们建立了q(x)的零点的边界,这反过来又产生了\(R(\lambda )\)的特征值的模的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounds on the Moduli of Eigenvalues of Rational Matrices

A rational matrix is a matrix-valued function \(R(\lambda ): {\mathbb {C}} \rightarrow M_p\) such that \(R(\lambda ) = \begin{bmatrix} r_{ij}(\lambda ) \end{bmatrix} _{p\times p}\), where \(r_{ij}(\lambda )\) are scalar complex rational functions in \(\lambda \) for \(i,j=1,2,\ldots ,p\). The aim of this paper is to obtain bounds on the moduli of eigenvalues of rational matrices in terms of the moduli of their poles. To a given rational matrix \(R(\lambda )\) we associate a block matrix \({\mathcal {C}}_R\) whose blocks consist of the coefficient matrices of \(R(\lambda )\), as well as a scalar real rational function q(x) whose coefficients consist of the norm of the coefficient matrices of \(R(\lambda )\). We prove that a zero of q(x) which is greater than the moduli of all the poles of \(R(\lambda )\) will be an upper bound on the moduli of eigenvalues of \(R(\lambda )\). Moreover, by using a block matrix associated with q(x), we establish bounds on the zeros of q(x), which in turn yields bounds on the moduli of eigenvalues of \(R(\lambda )\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信