{"title":"风电场的无模型快速频率支持以跟踪最佳频率轨迹","authors":"Yubo Zhang;Songhao Yang;Zhiguo Hao;Baohui Zhang","doi":"10.1109/TSTE.2024.3430972","DOIUrl":null,"url":null,"abstract":"The fast frequency support (FFS) towards frequency trajectory optimization provides a system view for the frequency regulation of wind farms (WFs). However, the existing frequency trajectory optimization-based FFS generally relies on the accurate governor dynamics model of synchronous generators (SGs), which aggrandizes the difficulty of controller implementation. In this paper, a proportional-integral (PI) based FFS of WFs is designed for tracking the optimal frequency trajectory, which gets rid of the dependence on the governor model. Firstly, the prototypical PI-based FFS of WFs is proposed and its feasibility for tracking the optimal frequency trajectory is analyzed and demonstrated. Then, based on the “frequency-RoCoF” form of the optimal frequency trajectory, a more practical PI controller is constructed, avoiding the time dependence of the prototypical PI controller. Besides, an adaptive gain associated with PI parameters is designed for multi-WF coordination. Finally, the validity of the proposed method is verified in both the single-WF system and the multi-WF system.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"15 4","pages":"2638-2650"},"PeriodicalIF":8.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-Free Fast Frequency Support of Wind Farms for Tracking Optimal Frequency Trajectory\",\"authors\":\"Yubo Zhang;Songhao Yang;Zhiguo Hao;Baohui Zhang\",\"doi\":\"10.1109/TSTE.2024.3430972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fast frequency support (FFS) towards frequency trajectory optimization provides a system view for the frequency regulation of wind farms (WFs). However, the existing frequency trajectory optimization-based FFS generally relies on the accurate governor dynamics model of synchronous generators (SGs), which aggrandizes the difficulty of controller implementation. In this paper, a proportional-integral (PI) based FFS of WFs is designed for tracking the optimal frequency trajectory, which gets rid of the dependence on the governor model. Firstly, the prototypical PI-based FFS of WFs is proposed and its feasibility for tracking the optimal frequency trajectory is analyzed and demonstrated. Then, based on the “frequency-RoCoF” form of the optimal frequency trajectory, a more practical PI controller is constructed, avoiding the time dependence of the prototypical PI controller. Besides, an adaptive gain associated with PI parameters is designed for multi-WF coordination. Finally, the validity of the proposed method is verified in both the single-WF system and the multi-WF system.\",\"PeriodicalId\":452,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Energy\",\"volume\":\"15 4\",\"pages\":\"2638-2650\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10605103/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10605103/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
面向频率轨迹优化的快速频率支持(FFS)为风电场(WFs)的频率调节提供了系统视图。然而,现有的基于频率轨迹优化的 FFS 通常依赖于同步发电机 (SG) 的精确调速器动力学模型,这增加了控制器实现的难度。本文设计了一种基于比例积分(PI)的风力发电机 FFS,用于跟踪最优频率轨迹,摆脱了对调速器模型的依赖。首先,提出了基于 PI 的 WFs FFS 原型,并分析和论证了其跟踪最佳频率轨迹的可行性。然后,根据最佳频率轨迹的 "频率-RoCoF "形式,构建了一个更实用的 PI 控制器,避免了原型 PI 控制器的时间依赖性。此外,还为多 WF 协调设计了与 PI 参数相关的自适应增益。最后,在单 WF 系统和多 WF 系统中验证了所提方法的有效性。
Model-Free Fast Frequency Support of Wind Farms for Tracking Optimal Frequency Trajectory
The fast frequency support (FFS) towards frequency trajectory optimization provides a system view for the frequency regulation of wind farms (WFs). However, the existing frequency trajectory optimization-based FFS generally relies on the accurate governor dynamics model of synchronous generators (SGs), which aggrandizes the difficulty of controller implementation. In this paper, a proportional-integral (PI) based FFS of WFs is designed for tracking the optimal frequency trajectory, which gets rid of the dependence on the governor model. Firstly, the prototypical PI-based FFS of WFs is proposed and its feasibility for tracking the optimal frequency trajectory is analyzed and demonstrated. Then, based on the “frequency-RoCoF” form of the optimal frequency trajectory, a more practical PI controller is constructed, avoiding the time dependence of the prototypical PI controller. Besides, an adaptive gain associated with PI parameters is designed for multi-WF coordination. Finally, the validity of the proposed method is verified in both the single-WF system and the multi-WF system.
期刊介绍:
The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.