基于区域的光谱空间互感网络用于高光谱图像重建

IF 4.2 2区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jianan Li;Wangcai Zhao;Tingfa Xu
{"title":"基于区域的光谱空间互感网络用于高光谱图像重建","authors":"Jianan Li;Wangcai Zhao;Tingfa Xu","doi":"10.1109/TCI.2024.3430478","DOIUrl":null,"url":null,"abstract":"In hyperspectral compression imaging, the choice of a reconstruction algorithm is critical for achieving high-quality results. Hyperspectral Images (HSI) have strong spectral-spatial correlations within local regions, valuable for reconstruction. However, existing learning-based methods often overlook regional variations by treating the entire image as a whole. To address this, we propose a novel region-based iterative approach for HSI reconstruction. We introduce a deep unfolding method augmented with a Region-based Spectral-Spatial Mutual Induction (RSSMI) network to model regional priors. Our approach involves partitioning the image into regions during each unfolding phase. Within each region, we employ a spatial-guided spectral attention module for holistic spectral relationships and a spectral-guided spatial attention module for spatial details. By leveraging mutual induction, our method simultaneously recovers spectral and spatial information. Furthermore, we address the issue of favoring easy-to-learn regions by introducing Focal Region Loss that dynamically adjusts loss weights for regions, emphasizing those that are harder to reconstruct. Experimental results demonstrate that our method achieves competitive performance and excels in spectrum and texture reconstruction on both simulated and real HSI datasets.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"10 ","pages":"1139-1151"},"PeriodicalIF":4.2000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Region-Based Spectral-Spatial Mutual Induction Network for Hyperspectral Image Reconstruction\",\"authors\":\"Jianan Li;Wangcai Zhao;Tingfa Xu\",\"doi\":\"10.1109/TCI.2024.3430478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In hyperspectral compression imaging, the choice of a reconstruction algorithm is critical for achieving high-quality results. Hyperspectral Images (HSI) have strong spectral-spatial correlations within local regions, valuable for reconstruction. However, existing learning-based methods often overlook regional variations by treating the entire image as a whole. To address this, we propose a novel region-based iterative approach for HSI reconstruction. We introduce a deep unfolding method augmented with a Region-based Spectral-Spatial Mutual Induction (RSSMI) network to model regional priors. Our approach involves partitioning the image into regions during each unfolding phase. Within each region, we employ a spatial-guided spectral attention module for holistic spectral relationships and a spectral-guided spatial attention module for spatial details. By leveraging mutual induction, our method simultaneously recovers spectral and spatial information. Furthermore, we address the issue of favoring easy-to-learn regions by introducing Focal Region Loss that dynamically adjusts loss weights for regions, emphasizing those that are harder to reconstruct. Experimental results demonstrate that our method achieves competitive performance and excels in spectrum and texture reconstruction on both simulated and real HSI datasets.\",\"PeriodicalId\":56022,\"journal\":{\"name\":\"IEEE Transactions on Computational Imaging\",\"volume\":\"10 \",\"pages\":\"1139-1151\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computational Imaging\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10604291/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10604291/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在高光谱压缩成像中,重建算法的选择对于获得高质量的结果至关重要。高光谱图像(HSI)在局部区域内具有很强的光谱空间相关性,这对重建很有价值。然而,现有的基于学习的方法往往将整个图像作为一个整体来处理,从而忽略了区域变化。为了解决这个问题,我们提出了一种新颖的基于区域的 HSI 重建迭代方法。我们引入了一种深度展开方法,并使用基于区域的光谱空间互感(RSSMI)网络对区域先验进行建模。我们的方法包括在每个展开阶段将图像划分为多个区域。在每个区域内,我们采用空间引导的光谱注意模块来处理整体光谱关系,并采用光谱引导的空间注意模块来处理空间细节。通过相互归纳,我们的方法可以同时恢复光谱和空间信息。此外,我们还通过引入 "焦点区域损失"(Focal Region Loss)来解决偏重易学区域的问题。"焦点区域损失 "可动态调整区域损失权重,强调那些较难重建的区域。实验结果表明,我们的方法在模拟和真实人脸图像数据集上都取得了具有竞争力的性能,并在频谱和纹理重建方面表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Region-Based Spectral-Spatial Mutual Induction Network for Hyperspectral Image Reconstruction
In hyperspectral compression imaging, the choice of a reconstruction algorithm is critical for achieving high-quality results. Hyperspectral Images (HSI) have strong spectral-spatial correlations within local regions, valuable for reconstruction. However, existing learning-based methods often overlook regional variations by treating the entire image as a whole. To address this, we propose a novel region-based iterative approach for HSI reconstruction. We introduce a deep unfolding method augmented with a Region-based Spectral-Spatial Mutual Induction (RSSMI) network to model regional priors. Our approach involves partitioning the image into regions during each unfolding phase. Within each region, we employ a spatial-guided spectral attention module for holistic spectral relationships and a spectral-guided spatial attention module for spatial details. By leveraging mutual induction, our method simultaneously recovers spectral and spatial information. Furthermore, we address the issue of favoring easy-to-learn regions by introducing Focal Region Loss that dynamically adjusts loss weights for regions, emphasizing those that are harder to reconstruct. Experimental results demonstrate that our method achieves competitive performance and excels in spectrum and texture reconstruction on both simulated and real HSI datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Computational Imaging
IEEE Transactions on Computational Imaging Mathematics-Computational Mathematics
CiteScore
8.20
自引率
7.40%
发文量
59
期刊介绍: The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信