利用双边贸易条款预测国际贸易流量

Zijie Pan, Stepan Gordeev, Jiahui Zhao, Ziyi Meng, Caiwen Ding, Sandro Steinbach, Dongjin Song
{"title":"利用双边贸易条款预测国际贸易流量","authors":"Zijie Pan, Stepan Gordeev, Jiahui Zhao, Ziyi Meng, Caiwen Ding, Sandro Steinbach, Dongjin Song","doi":"arxiv-2407.13698","DOIUrl":null,"url":null,"abstract":"This paper presents a novel methodology for predicting international\nbilateral trade flows, emphasizing the growing importance of Preferential Trade\nAgreements (PTAs) in the global trade landscape. Acknowledging the limitations\nof traditional models like the Gravity Model of Trade, this study introduces a\ntwo-stage approach combining explainable machine learning and factorization\nmodels. The first stage employs SHAP Explainer for effective variable\nselection, identifying key provisions in PTAs, while the second stage utilizes\nFactorization Machine models to analyze the pairwise interaction effects of\nthese provisions on trade flows. By analyzing comprehensive datasets, the paper\ndemonstrates the efficacy of this approach. The findings not only enhance the\npredictive accuracy of trade flow models but also offer deeper insights into\nthe complex dynamics of international trade, influenced by specific bilateral\ntrade provisions.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"International Trade Flow Prediction with Bilateral Trade Provisions\",\"authors\":\"Zijie Pan, Stepan Gordeev, Jiahui Zhao, Ziyi Meng, Caiwen Ding, Sandro Steinbach, Dongjin Song\",\"doi\":\"arxiv-2407.13698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel methodology for predicting international\\nbilateral trade flows, emphasizing the growing importance of Preferential Trade\\nAgreements (PTAs) in the global trade landscape. Acknowledging the limitations\\nof traditional models like the Gravity Model of Trade, this study introduces a\\ntwo-stage approach combining explainable machine learning and factorization\\nmodels. The first stage employs SHAP Explainer for effective variable\\nselection, identifying key provisions in PTAs, while the second stage utilizes\\nFactorization Machine models to analyze the pairwise interaction effects of\\nthese provisions on trade flows. By analyzing comprehensive datasets, the paper\\ndemonstrates the efficacy of this approach. The findings not only enhance the\\npredictive accuracy of trade flow models but also offer deeper insights into\\nthe complex dynamics of international trade, influenced by specific bilateral\\ntrade provisions.\",\"PeriodicalId\":501139,\"journal\":{\"name\":\"arXiv - QuantFin - Statistical Finance\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Statistical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.13698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种预测国际双边贸易流量的新方法,强调了优惠贸易协定(PTAs)在全球贸易格局中日益增长的重要性。考虑到传统模型(如贸易引力模型)的局限性,本研究引入了结合可解释机器学习和因式分解模型的两阶段方法。第一阶段采用 SHAP Explainer 进行有效的变量选择,识别出 PTA 中的关键条款;第二阶段采用因子化机器模型分析这些条款对贸易流量的成对交互效应。通过分析综合数据集,本文证明了这种方法的有效性。研究结果不仅提高了贸易流量模型的预测准确性,还深入揭示了国际贸易受特定双边贸易条款影响的复杂动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
International Trade Flow Prediction with Bilateral Trade Provisions
This paper presents a novel methodology for predicting international bilateral trade flows, emphasizing the growing importance of Preferential Trade Agreements (PTAs) in the global trade landscape. Acknowledging the limitations of traditional models like the Gravity Model of Trade, this study introduces a two-stage approach combining explainable machine learning and factorization models. The first stage employs SHAP Explainer for effective variable selection, identifying key provisions in PTAs, while the second stage utilizes Factorization Machine models to analyze the pairwise interaction effects of these provisions on trade flows. By analyzing comprehensive datasets, the paper demonstrates the efficacy of this approach. The findings not only enhance the predictive accuracy of trade flow models but also offer deeper insights into the complex dynamics of international trade, influenced by specific bilateral trade provisions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信