椭圆卡洛吉罗-莫泽模型 1+1 场类似物的非超局域经典 r 矩阵结构

IF 2 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Andrei Zotov
{"title":"椭圆卡洛吉罗-莫泽模型 1+1 场类似物的非超局域经典 r 矩阵结构","authors":"Andrei Zotov","doi":"10.1088/1751-8121/ad5ee1","DOIUrl":null,"url":null,"abstract":"We consider 1+1 field generalization of the elliptic Calogero–Moser model. It is shown that the Lax connection satisfies the classical non-ultralocal r-matrix structure of Maillet type. Next, we consider 1+1 field analogue of the spin Calogero–Moser model and its multipole (or multispin) extension. Finally, we discuss the field analogue of the classical IRF-Vertex correspondence, which relates utralocal and non-ultralocal r-matrix structures.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"61 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-ultralocal classical r-matrix structure for 1+1 field analogue of elliptic Calogero–Moser model\",\"authors\":\"Andrei Zotov\",\"doi\":\"10.1088/1751-8121/ad5ee1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider 1+1 field generalization of the elliptic Calogero–Moser model. It is shown that the Lax connection satisfies the classical non-ultralocal r-matrix structure of Maillet type. Next, we consider 1+1 field analogue of the spin Calogero–Moser model and its multipole (or multispin) extension. Finally, we discuss the field analogue of the classical IRF-Vertex correspondence, which relates utralocal and non-ultralocal r-matrix structures.\",\"PeriodicalId\":16763,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad5ee1\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad5ee1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了椭圆卡洛吉罗-莫泽模型的 1+1 场广义化。结果表明,拉克斯连接满足经典的麦莱型非超局域 r 矩阵结构。接下来,我们考虑了自旋卡洛吉罗-莫泽模型的 1+1 场类似物及其多极(或多频)扩展。最后,我们讨论了经典 IRF 顶点对应的场类比,它关联了宇称和非宇称 r 矩阵结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-ultralocal classical r-matrix structure for 1+1 field analogue of elliptic Calogero–Moser model
We consider 1+1 field generalization of the elliptic Calogero–Moser model. It is shown that the Lax connection satisfies the classical non-ultralocal r-matrix structure of Maillet type. Next, we consider 1+1 field analogue of the spin Calogero–Moser model and its multipole (or multispin) extension. Finally, we discuss the field analogue of the classical IRF-Vertex correspondence, which relates utralocal and non-ultralocal r-matrix structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
14.30%
发文量
542
审稿时长
1.9 months
期刊介绍: Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信